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Abstract The present paper studies time-consistent solutions to an investment-reinsurance problem under a

mean-variance framework. The paper is distinguished from other literature by taking into account the interests

of both an insurer and a reinsurer jointly. The claim process of the insurer is governed by a Brownian motion

with a drift. A proportional reinsurance treaty is considered and the premium is calculated according to the

expected value principle. Both the insurer and the reinsurer are assumed to invest in a risky asset, which is

distinct for each other and driven by a constant elasticity of variance model. The optimal decision is formulated

on a weighted sum of the insurer’s and the reinsurer’s surplus processes. Upon a verification theorem, which

is established with a formal proof for a more general problem, explicit solutions are obtained for the proposed

investment-reinsurance model. Moreover, numerous mathematical analysis and numerical examples are provided

to demonstrate those derived results as well as the economic meanings behind.

Keywords Investment-reinsurance problem, Mean-variance analysis, Time-consistent strategy, Constant e-

lasticity of variance model

1 Introduction

The quest for optimal reinsurance design has remained a fascinating problem among insurers, reinsurers
and academicians. An appropriate use of reinsurance could reduce the underwriting risk of an insurer and
thereby enhance its value. This explains why almost all the insurance companies throughout the world
have a reinsurance program. Reinsurance has also been used as an effective mechanism of risk-sharing
within an insurance group for various purposes, such as tax alleviation, stabilizing the profitability and
satisfying external regulatory capital requirement. The optimal reinsurance design models can primarily
be divided into two classes, known as static models and dynamic models. In the static models, the
reinsurance agreement is reached in advance with fixed provisions to apply over a time horizon and
therefore they are also called the single period models. Recent literature on the static models include [5],
[13], [14], [15], [16], [51] and references therein.

In a dynamic model, the provisions of the reinsurance treaty are adjusted dynamically over time depend-
ing on the accumulated information. Typically, the model boils down to solve an optimal control problem.
In a dynamic setting, the literature commonly study the optimal reinsurance strategy and investment
strategy simultaneously, leading to the optimal investment-reinsurance problem. The optimality criteria
adopted in the literature for such problem include minimizing the insurer’s ruin probability (e.g., [6], [49]
and [50]), maximizing the adjustment coefficient of the insurer’s risk process (e.g., [33] and [42]), maxi-
mizing the insurer’s expected utility (e.g., [7], [34], [44] and [52]), and mean-variance (MV) optimization
(e.g., [8], [9] and [20]).

In the present paper, we focus on the MV criterion to study the optimal reinsurance-investment prob-
lem. The proportional reinsurance treaty is considered in our model, and moreover, both the insurer and
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reinsurer are assumed to invest on a risky asset, which is distinct for each other, in additional to a risk
free asset. The dynamics of the risky assets for the insurer and the reinsurer to invest are driven by the
so-called constant elasticity of variance (CEV) model, which has been widely applied due to its ability in
capturing the volatility smile of financial asset returns as well as the leverage effect of the equity. The CEV
model has also been commonly advocated in actuarial literature, see, for example, [27], [30], [31], [42], [43]
and [56] among many others. To solve the proposed reinsurance-investment model, we embed it into a
more general dynamic control problem and formally establish a verification theorem for the general
problem, which may have potential applications for other relevant problems. Upon the established verifi-
cation theorem, explicit solutions are obtained for the proposed reinsurance-investment model. Moreover,
numerous sensitivity analysis is conducted, both mathematically and numerically with in-depth explana-
tions on the economic meanings behind, to explore how the obtained investment-reinsurance strategies
depend on various exogenous parameters, including weight parameter in the weighted sum process, the
reinsurance premium rate, as well as those associated with the investment assets.

Along with many others, three main features distinguish the present paper from those existing literature
on optimal investment-reinsurance problems. First, the interests of both an insurer and a reinsurer are
jointly reflected in our optimal reinsurance model, while a majority of the existing literature study the
optimal reinsurance problem (in both static and dynamic settings) merely from the insurer’s perspective.
Indeed, to the best of our knowledge, [13], [22], [26], [35], [38] and [39] are the only five papers with an
optimal reinsurance model jointly reflecting the interests of both parties, and only Li et al. [38], [39] study
the problems in dynamic settings with the optimality criterions of maximizing the product of the utilities
and the weighted sum of objectives for both parties, respectively. In the present paper, we consider the
weighted sum of the insurer’s and the reinsurer’s surplus processes and study the optimal reinsurance and
investment strategies for both parties by a mean-variance analysis on the weighted process. The weight
can be viewed as a regularization parameter to stress the importance of each party on the contract in
the process of decision, and in the extreme case with the weight being equal to 1, our model reduces to
the corresponding problem for a mean-variance insurer only. Thus, our model is more general than other
literature in this aspect.

Second, our model can also be viewed as a decision formulation for an insurance group. As we know,
in reality only the smallest insurers exist as a single corporation, and most major insurance companies
actually exist as insurance groups, say, for example, Allianz SE, Munich Reinsurance Company among
many others. Therefore, from the risk management point of view, a risk transfer among an insurance
group is a natural risk management way for insurance companies, and such a risk transfer is often realized
via certain reinsurance contracts between the insurer and the other members (or another member) within
the group. While different member companies may have distinct capacity to absorb risks of different
types, all the counter-parties in the reinsurance contracts can be generally viewed as a single identity in
terms of absorbing the risk from the insurer. Therefore, the problem can be abstracted to a framework
for an insurance group consisting of only two members — one insurer and one reinsurer. Throughout the
paper, we shall frequently refer to such a framework to explain the economic meanings of the our results.

Third, the MV analysis for the optimal reinsurance-investment strategies is a time-inconsistent problem
in that an optimal solution obtained at a time is no longer optimal as the time goes forward into a future
point. In the present paper, we aim to develop time-consistent reinsurance-investment strategy, whereas
the solutions obtained in the most previous literature, including those reviewed previously, are time-
inconsistent. In the present paper, we view the entire decision process as a non-cooperative game with
one player at each time point over the whole investment time horizon, who can be viewed as the future
incarnation of the decision-maker, and resort to the (subgame perfect Nash) equilibrium strategy, which
is a time-consistent solution. The equilibrium strategy has been popularly advocated for tackling time-
inconsistent problems among academia in recent years; see, for instance, [11], [12], [23], [36], [37], [47], [53]
and [54] among others. There are also some references on time-consistent solutions to reinsurance-
investment problems; see, for example, [40], [41], and [57]. They, however, address the problem only from
the insuer’s perspective without taking into account any concern from the reinsurer.

The paper proceeds as follows. The model formulation is given in Section 2 along with a verification
theorem for a general problem. The equilibrium solutions as well as some mathematical analysis are
presented in Section 3, and the numerical analysis is demonstrated in Section 4. Section 5 concludes the
paper, and all of the proofs are relegated to Appendices A and B.

2 Model formulation

2.1 Wealth processes

Let (Ω,F , P ) be a complete probability space with a filtration {Ft, t > 0} satisfying the usual conditions,
i.e., the filtration contains all P -null sets and is right continuous. All stochastic processes in this paper
are assumed to be well defined and adapted to the filtration. Consider an insurer with a claim process
described by a Brownian motion with a drift as follows

dC(t) = adt− bdW (t), (2.1)
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where a and b are two positive constants and W is a standard Brownian motion. The diffusion model
for the claim process is a limit of the classical compound Poisson model (see, e.g., [29]), and such an
approximation has been widely adopted in actuarial literature (e.g., [6], [30], [40] and [49]). Further
suppose that the insurance premium charged on the claims by the insurer is computed according to
the expected value principle with a loading factor θ > 0, so that the premium rate for the insurer is
c = (1 + θ)a, and this leads to the following surplus process for the insurer

dR1(t) = θadt+ bdW (t).

To proceed, suppose that a proportional reinsurance is applied between the insurer and a reinsurer, and
let p(t) denote the proportion covered by the reinsurer at time t. Further suppose that the reinsurance
premium is also charged according to the expected value principle with a safety loading η > θ. Therefore,
in the presence of the proportional reinsurance contract, the wealth processes of the insurer and the
reinsurer are respectively given by

dR1(t) = (1 + θ)adt− (1 + η)ap(t)dt − (1− p(t))dC(t)
= (θ − ηp(t)) adt+ b(1− p(t))dW (t)

(2.2)

and
dR2(t) = (1 + η)p(t)adt− p(t)dC(t)

= ηp(t)adt+ bp(t)dW (t).
(2.3)

Besides the insurance business, both the insurer and the reinsurer are allowed to invest in a risk-free
asset and a risky asset. We assume that the insurer and reinsurer specialize in two distinct risky assets
in their investment. Asset specialization can be justified by that investors tend to trade only in familiar
assets. Since analyzing stock data takes time and effort, each investor is likely to invest in familiar assets
which are in a subset of all available assets. The price process of the risk-free asset is given by

dB(t) = rB(t)dt, B(0) = B0,

where r > 0 is the risk-free interest rate. The price process of the risky asset available for the insurer to
invest is described by

dS1(t) = S1(t)
[
µ1dt+ σ1(S1(t))

k1dW1(t)
]
, S1(0) = s1,0, (2.4)

and for the reinsurer is given by

dS2(t) = S2(t)
[
µ2dt+ σ2(S2(t))

k2dW2(t)
]
, S2(0) = s2,0. (2.5)

For convenience, assets S1(t) and S2(t) will be respectively referred to as “risky asset 1” and “risky
asset 2”. It is reasonable to assume that the expected return rates µi > r for i = 1, 2, and the parameters
k1 and k2 in the instantaneous volatilities σ1(S1(t))

k1 and σ2(S2(t))
k2 satisfy the general condition k1 > 0

and k2 > 0 as in [18], [21], [25] and [28]. W1 and W2 are the randomness sources associated with the
financial assets S1 and S2. In addition, we assume W , W1 and W2 are independent of each other.

Processes (2.4) and (2.5) are called the CEV models, which are proposed by [17] to model the dynamics
of financial assets and is the first one to relax the constant volatility assumption of the celebrated [10]
model. In models (2.4) and (2.5), the existence of the exponent ki, i = 1, 2, called the elasticity parameters,
allows the instantaneous conditional variance of asset returns to depend on the asset price level, thus
exhibiting an implied volatility smile similar to volatility curves empirically observed. Moreover, the
CEV model also reflects the so-called leverage effect of the equity market, i.e., the existence of a negative
correlation between stock returns and realized stock volatility. Due to the various advantages of the CEV
model, it has been widely adopted for modelling financial asset’s price processes in the literature; see,
for instance, [19], [46], [55] among many others. In recent years, the CEV models have also been widely
used in actuarial literature, including [27], [30], [31], [42], [43] and [56] among many others.

The primary objective of the present paper is to investigate the optimal reinsurance between the insurer
and the reinsurer as well as their optimal investment strategies in an integrated way. To proceed, let
π1(t) and π2(t) respectively denote the money amounts invested in risky asset 1 by the insurer and in
risky asset 2 by the reinsurer at time t, t > 0. Then, the triplet

u(t) = (π1(t), π2(t), p(t))

encompasses the reinsurance strategy as well as the investment strategies for both the insurer and the
reinsurer. Hereafter the triplet u(t) is referred to as a trading strategy and the primary objective of the
present paper is to explore the optimal trading strategies from certain perspective.
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Given a trading strategy u(t), it is easy to obtain the following dynamics for the wealth process Xu of
the insurer and Y u of the reinsurer:

dXu(t) = [rXu(t) + a(θ − ηp(t)) + π1(t)(µ1 − r)] dt

+b(1− p(t))dW (t) + π1(t)σ1(S1(t))
k1dW1(t), (2.6)

and

dY u(t) = [rY u(t) + aηp(t) + π2(t)(µ2 − r)] dt

+bp(t)dW (t) + π2(t)σ2(S2(t))
k2dW2(t), (2.7)

respectively.
In the present paper, we consider the following weighted sum process for decision making:

Zu(t) = αXu(t) + βY u(t) for some α, β ∈ (0, 1], (2.8)

where α and β are two constants from interval [0, 1]. Zu(t) in equation (2.8) can be interpreted in at least
two distinct ways, which indeed constitute our motivation for the present paper. First, it can be observed
that an insurer and a reinsurer may belong to the same corporations. In such case, Zu in (2.8) can be
interpreted as the total surplus of the corporations, if the corporations own 100α% shares of the insurer
and 100β% shares of the reinsurer. When the shares on both the insurance and reinsurance companies
the corporations hold are enough to dominate the management boards of both companies, the decision-
making on both companies is up to the corporations, and the analysis of optimal investment-reinsurance
strategies should be based on the weighted sum process Zu(t) from the interests of the corporations.

Second, if we set β = 1 − α in the weighted sum process Zu(t), then the parameter α takes a role
of balancing the interests between the insurer and the reinsurer in deciding the optimal investment-
reinsurance strategies. In particular, Zu is simply the half of total surplus of the insurer’s and reinsurer’s
for α = 1/2, β = 1/2, whereas it reduces to the wealth process of the insurer with α = 1. For the above
reasons, α and β may be referred to as decision weights.

Combining (2.6)-(2.8) yields the following dynamics for the weighted sum process:

dZu(t) = [rZu(t) + απ1(t)(µ1 − r) + βπ2(t)(µ2 − r) + aαθ − aηp(t)(α− β)] dt

+απ1(t)σ1(S1(t))
k1dW1(t) + βπ2(t)σ2(S2(t))

k2dW2(t)

+ [αb − bp(t)(α− β)] dW (t).

(2.9)

Definition 2.1. A trading strategy {u(v) := (π1(v), π2(v), p(v)), v ∈ [t, T ]} is said to be admissible
with respect to an initial condition (t, z, s1, s2) ∈ [0, T ]× R × R

+ × R
+, if for any t ∈ [0, T ], it satisfies

the following conditions:

(a) ∀(z, s1, s2) ∈ R × R
+ × R

+, equation (2.9) has a pathwise unique solution {Zu(v)}v∈[t,T ] with

Zu(t) = z, S1(t) = s1, S2(t) = s2;

(b) ∀v ∈ [t, T ], p(v) ∈ [0, 1];

(c) ∀ρ ∈ [1,∞], ∀(t, z, s1, s2) ∈ [0, T ]× R× R
+ × R

+,Et,z,s1,s2

(
sup

v∈[t,T ]

|Zu(v)|ρ

)
< ∞;

(d) ∀v ∈ [t, T ],E
[∫ T

t

(
|π1(v)|

4 + |π2(v)|
4
)
dv
]
< ∞;

where Et,z,s1,s2 (·) = E (·|Z(t) = z, S1(t) = s1, S2(t) = s2).

Hereafter, U(t, z, s1, s2) denotes the set of all admissible strategies with respect to the initial condition
(t, z, s1, s2) ∈ [0, T ]× R× R

+ × R
+.

2.2 Problem formulation and a verification theorem

Most existing literature (e.g., [8], [32]) on mean-variance problem only consider the optimality of solutions
at the initial time, with a formulation corresponding to the weighted sum process Zu as follows:

sup
u∈U

{
E0,Zu(0),S1(0),S2(0) [Z

u(T )]−
γ

2
Var0,Zu(0),S1(0),S2(0) [Z

u(T )]
}
, (2.10)
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where U denotes the corresponding admissible set and γ is the risk aversion coefficient of the decision-
maker. A formulation like (2.10) is a static optimization problem in the sense that the objective are
purely based on information at the initial time 0, and thus the resulting solutions are precommitment in
that they are not updated with the information accumulated over time. As explained by [37] and [40], the
target in a pragmatic decision is often varying over time, making the solutions obtained from formulation
(2.10) time-inconsistent in that they are optimal only at time 0 and no longer as time moves forwards
into the future. Time-consistency is a basic requirement for rational investors on a decision, and thus,
from a practical point of view, a solution based on formulation (2.10) is not usable.

The present paper considers the following formulation with a time-varying objective instead: For any
(t, z, s1, s2) ∈ [0, T ]× R× R

+ × R
+, the insurer aims to derive

sup
u∈U(t,z,s1,s2)

{
Et,z,s1,s2 [Z

u(T )]−
γ

2
Vart,z,s1,s2 [Z

u(T )]
}
. (2.11)

Because the variance term in the objective lacks the iterated expectation property, the value function
for problem (2.11) do not satisfy Bellman principle of optimality and this makes it a time-inconsistent
problem in that the solutions obtained at time t ∈ [0, T ] is not optimal for a future time v > t. To develop
a time-consistent solution to problem (2.11), we resort to the so-called equilibrium strategy as defined
in Definition 2.2 below. Roughly speaking, the decision in the equilibrium strategy established at time t
agree with the one derived at time t+∆t for an infinitesimal ∆t > 0, which is time-consistent.

For the equilibrium strategy to the mean-variance problem (2.11), a more general problem, which
includes (2.11) as a special case, will be studied using a game theoretic perspective. To proceed, let
O = [0, T ]× R

n for integer n > 1 and denote

C1,2(O) = {φ(t, x)|φ(t, ·) is once continuously differentiable on [0, T ] and φ(·, x) is

twice continuously differentiable on R
n.} ,

D1,2(O) =
{
φ(t, x)|φ(t, x) ∈ C1,2(O) and all once partial derivatives of φ(·, x) satisfy

the polynomial growth condition on R
n.} .

The general problem is defined for any function f ∈ D1,2([0, T ]× R
5) as follows:

sup
u∈U(t,z,s1,s2)

f (t, z, s1, s2, g
u(t, z, s1, s2), h

u(t, z, s1, s2)) , t ∈ [0, T ], (2.12)

where (z, s1, s2) ∈ R× R
+ × R

+,

gu(t, z, s1, s2) = Et,z,s1,s2 [Z
u(T )], (2.13)

hu(t, z, s1, s2) = Et,z,s1,s2 [(Z
u(T ))2], (2.14)

and U(t, z, s1, s2) is the set of admissible strategies at state (t, z, s1, s2) with the precise definition given
in the preceding subsection. In particular, with

f(t, z, s1, s2, g, h) = g −
γ

2
(h− g2), (2.15)

problem (2.12) reduces to problem (2.11).
For a time-consistent solution to a dynamic problem such as (2.12), [23] proposed the following defini-

tion of equilibrium strategy.

Definition 2.2. Given an admissible strategy u∗(t) := (π∗

1(t), π
∗

2(t), p
∗(t)) ∈ U(t, z, s1, s2), construct

strategy

uτ (v) =

{
(π̃1, π̃2, p̃), t 6 v < t+ τ,

u∗(v), t+ τ 6 v < T,

where π̃1, π̃2 ∈ R , p̃ ∈ [0, 1] and v > 0. If

lim
τ→0

inf
f(t, z, s1, s2, g

u∗

, hu∗

)− f(t, z, s1, s2, g
uτ , huτ )

τ
> 0 (2.16)

for all (π̃1, π̃2, p̃) ∈ R × R × [0, 1] and (t, z, s1, s2) ∈ [0, T ] × R × R
+ × R

+, then u∗ is said to be an
equilibrium strategy. Correspondingly, the equilibrium value function is defined by

V (t, z, s1, s2) = f(t, z, s1, s2, g
u∗

(t, z, s1, s2), h
u∗

(t, z, s1, s2)).
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To develop an equilibrium strategy for the mean-variance problem (2.11), a verification theorem, which
gives the extended Hamilton-Jacobi-Bellman (HJB) equations for the general problem (2.12), seems
necessary. To proceed, denote Q := R× R

+ × R
+ and a variational operator

Auφ(t, z, s1, s2) := φt + [rz + απ1(µ1 − r) + βπ2(µ2 − r) + aαθ − aηp(α− β)] φz

+µ1s1φs1 + µ2s2φs2

+
1

2

{
α2π2

1σ
2
1s

2k1
1 + β2π2

2σ
2
2s

2k2
2 + [αb − bp(α− β)]2

}
φzz

+
1

2
σ2
1s

2k1+2
1 φs1s1 +

1

2
σ2
2s

2k2+2
2 φs2s2 + απ1σ

2
1s

2k1+1
1 φzs1

+βπ2σ
2
2s

2k2+1
2 φzs2 (2.17)

for any φ(t, z, s1, s2) ∈ C1,2([0, T ]×Q).

Theorem 2.3. (Verification Theorem). Consider problem (2.12). If there exist three real value func-
tions F (t, z, s1, s2), G(t, z, s1, s2), H(t, z, s1, s2) ∈ D1,2([0, T ]×Q) satisfy

sup
u∈U(t,z,s1,s2)

{AuF (t, z, s1, s2)− ξu(t, z, s1, s2)} = 0, F (T, z, s1, s2) = f(T, z, s1, s2, z, z
2), (2.18)

Au∗

G(t, z, s1, s2) = 0, G(T, z, s1, s2) = z, (2.19)

Au∗

H(t, z, s1, s2) = 0, H(T, z, s1, s2) = z2, (2.20)

with

u∗ := arg sup
u∈U(t,z,s1,s2)

{AuF (t, z, s1, s2)− ξu(t, z, s1, s2)} ,

then
V (t, z, s1, s2) = F (t, z, s1, s2),

gu
∗

(t, z, s1, s2) = G(t, z, s1, s2),

hu∗

(t, z, s1, s2) = H(t, z, s1, s2),
(2.21)

and u∗ = (π∗

1 , π
∗

2 , p
∗) is an equilibrium strategy to problem (2.12), where

ξu(t, z, s1, s2) = ft + [rz + απ1(µ1 − r) + βπ2(µ2 − r) + aαθ − aηp(α− β)] fz

+µ1s1fs1 + µ2s2fs2 +
1

2

[
α2π2

1σ
2
1s

2k1
1 + β2π2

2σ
2
2s

2k2
2

+(αb− bp(α− β))2
]
Πu

1 +
1

2
σ2
1s

2k1+2
1 Πu

2 +
1

2
σ2
2s

2k2+2
2 Πu

3

+απ1σ
2
1s

2k1+1
1 Πu

4 + βπ2σ
2
2s

2k2+1
2 Πu

5 ,

(2.22)






Πu
1 = fzz + 2fzgg

u
z + 2fzhh

u
z + fhh(h

u
z )

2 + fgg(g
u
z )

2 + 2fghg
u
zh

u
z ,

Πu
2 = fs1s1 + 2fgs1g

u
s1

+ 2fhs1h
u
s1

+ fgg(g
u
s1
)2 + fhh(h

u
s1
)2 + 2fghg

u
s1
hu
s1
,

Πu
3 = fs2s2 + 2fgs2g

u
s2

+ 2fhs2h
u
s2

+ fgg(g
u
s2
)2 + fhh(h

u
s2
)2 + 2fghg

u
s2
hu
s2
,

Πu
4 = fzs1 + fzgg

u
s1

+ fzhh
u
s1

+ fgs1g
u
z + fhs1h

u
z + fggg

u
z g

u
s1

+ fhhh
u
zh

u
s1

+fghg
u
s1
hu
z + fghg

u
zh

u
s1
,

Πu
5 = fzs2 + fzgg

u
s2

+ fzhh
u
s2

+ fgs2g
u
z + fhs2h

u
z + fggg

u
z g

u
s2

+ fhhh
u
zh

u
s2

+fghg
u
s2
hu
z + fghg

u
zh

u
s2

(2.23)

and

f = f(t, z, s1, s2, g, h), g
u = gu(t, z, s1, s2), h

u = hu(t, z, s1, s2).

Proof. See Appendix A.
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3 Optimal time-consistent strategy for the mean-variance problem

By using Theorem 2.3, the equilibrium strategy {u∗(t) = (π∗

1(t), π
∗

2(t), p
∗(t)), t ∈ [0, T ]} for problem (2.11)

can be obtained analytically as summarized in Theorems 3.1 and 3.2 for α 6= β and α = β, respectively.

Theorem 3.1. Denote

t1 = T +
1

r
min

(
ln

αγb2

aη
, ln

βγb2

aη

)
, (3.1)

and

t2 = T +
1

r
max

(
ln

αγb2

aη
, ln

βγb2

aη

)
. (3.2)

For problem (2.11) with α 6= β, an equilibrium investment strategy for the insurer and the reinsurer is

π∗

1(t) =
(µ1 − r)e−r(T−t)

γασ2
1(S1(t))2k1

[
1 + (µ1 − r)

(
1− e−2k1r(T−t)

)]
, 0 6 t 6 T, (3.3)

and

π∗

2(t) =
(µ2 − r)e−r(T−t)

γβσ2
2(S2(t))2k2

[
1 + (µ2 − r)

(
1− e−2k2r(T−t)

)]
, 0 6 t 6 T, (3.4)

and an equilibrium reinsurance strategy and value function are given depending on the model parameters
as in the follows cases:

(1) When the parameters satisfy the conditions of Case III in Table 1,

p∗(t) =
α

α− β
−

aη

γb2(α− β)
e−r(T−t), 0 6 t 6 T, (3.5)

and the equilibrium value function is given by (B.11) with A1(t), B1(t), C1(t) and D1(t) in (B.23);

(2) When the parameters satisfy the conditions of Case V in Table 1,

p∗(t) =





0, 0 6 t < t1,

α

α− β
−

aη

γb2(α− β)
e−r(T−t), t1 6 t 6 T,

and the equilibrium value function is given by (B.24);

(3) When the parameters satisfy the conditions of Case VI in Table 1, p∗(t) = 0, 0 6 t 6 T , and the
equilibrium value function is given by the function F in (B.27);

(4) When the parameters satisfy the conditions in any of Cases IV and IX in Table 1,

p∗(t) =





0, 0 6 t < t1,

α

α− β
−

aη

γb2(α− β)
e−r(T−t), t1 6 t < t2,

1, t2 6 t 6 T,

and the equilibrium value function is given by (B.29);

(5) When the parameters satisfy the conditions in any of Cases II and VIII in Table 1,

p∗(t) =





α

α− β
−

aη

γb2(α− β)
e−r(T−t), 0 6 t < t2,

1, t2 6 t 6 T,

and the equilibrium value function is expressed in (B.33);



8 Zhao H et al. Sci China Math for Review

Table 1 Classification for optimal reinsurance strategy.
parameters α, β Case

max (α, β) 6 aη
γb2

e−rT I

min (α, β) 6 aη
γb2

e−rT < max (α, β) < aη
γb2

II
aη
γb2

e−rT < aη
γb2

6 1 min (α, β) 6 aη
γb2

e−rT < aη
γb2

6 max (α, β) III
aη
γb2

e−rT < min (α, β) < max (α, β) < aη
γb2

IV
aη
γb2

e−rT < min (α, β) < aη
γb2

6 max (α, β) V
aη
γb2

6 min (α, β) and α 6= β VI

maxα, β 6
aη
γb2

e−rT and α 6= β VII
aη
γb2

e−rT 6 1 < aη
γb2

min (α, β) 6 aη
γb2

e−rT < max (α, β) VIII
aη
γb2

e−rT < min (α, β) and α 6= β IX

1 < aη
γb2

e−rT < aη
γb2

α 6= β X

(6) When the parameters satisfy the conditions in any of Cases I, VII and X in Table 1, p∗(t) = 1, 0 6

t 6 T , and the equilibrium value function is given by the function F in (B.35).

Proof. The proof is relegated to Appendix B.

Theorem 3.2. For problem (2.11) with α = β, (π∗

1 , π
∗

2) given in (3.3) and (3.4) is also an equilibrium
investment strategies for the insurer and the reinsurer, and moreover, any measurable function p∗(t) :
[0, T ] → [0, 1] is one equilibrium reinsurance treaty. The equilibrium value function is

F (t, z, s1, s2) = A1(t)z +
B1(t)

γ
s−2k1
1 +

C1(t)

γ
s−2k2
2 +

L1(t)

γ
,

where

L1(t) =
γaαθ

r
[er(T−t) − 1] +

γ2α2b2

4r
[1− e2r(T−t)] + σ2

1k1(2k1 + 1)

∫ T

t

B1(s)ds

and A1(t), B1(t), C1(t) are given in (B.23).

Proof. The proof is similar to that of Theorem 3.1 and thus we omit it.

Indeed, when α = β, the joint mean-variance utility between the insurer and the reinsurer is irrelevant
to the reinsurance proportion p(t) and this implies that the joint utility can not be enhanced via any
proportional reinsurance treaty between the two parties. This explains why any measurable function
p∗(t) : [0, T ] → [0, 1] is one solution as equilibrium reinsurance treaty.

Remark 3.3. An immediate observation from Theorems 3.1 and 3.2 is that the equilibrium investment
strategies for both the insurer and reinsurer are related to the proportional reinsurance treaty only via
the decision weight α and β in the model.

Moreover, expressions (3.3) and (3.4) show that the equilibrium investment strategies for both the
insurer and the reinsurer can be decomposed into two parts (below are just for the insurer’s strategy):

µ1 − r

γασ2
1(S1(t))2k1

e−r(T−t),

which is similar to the optimal strategy under the GBM model except for the stochastic volatility, and

(µ1 − r)2e−r(T−t)

γαrσ2
1(S1(t))2k1

(
1− e−2k1r(T−t)

)
,

which is a supplementary term resulted from the changes of the volatility from GBM model to the CEV
model and reflects the insurer’s decision to hedge the volatility risk.

Remark 3.4. Theorem 3.1 shows an obvious dependence of the equilibrium strategy on the decision
weights α and β as a consequence of its presence in weighted sum process (2.8). For p∗(t) 6= 0, 1, the
solution developed in Theorem 3.1 is given by

p∗(t) =
α

α− β
−

aη

γb2(α− β)
e−r(T−t)
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in all the cases. Therefore, the relationship between the reinsurance strategy and α is attributed to two

factors. On one hand, the term −aηe−r(T−t)

γb2(α−β) increases the value of p∗(t) as α increases, and on the other

hand, the term α
α−β

decreases its value as α increases. Moreover, equations (3.3) and (3.4) respectively

show that α exerts a negative effect on the insurer’s investment strategy and a positive effect on the
reinsurer’s investment strategy. Due to the insurer’s attitude of risk aversion, with a larger α assigned,
more weight is given to the preference of the insurer in the decision formulation, and this leads to a
reduction in the risky investment by the insurer and an increase in the reinsurer’s risky investment to
potentially create more wealth for the whole insurance group.

Remark 3.5. Based on the results established in Theorem 3.1, the sensitivity of the equilibrium rein-
surance proportion p∗(·) to each model parameter can be analyzed as follows.

(a) From (3.5), we get

∂p∗

∂α
=

1

(α − β)2

[
aη

γb2
e−r(T−t) − β

]
,
∂p∗

∂β
=

1

(α− β)2

[
α−

aη

γb2
e−r(T−t)

]
. (3.6)

Then the optimal reinsurance strategy increases with α when β < aη
γb2

e−r(T−t) and increases with

β when α > aη
γb2

e−r(T−t).

(b) It is easy to derive

∂p∗

∂t
= −

arηe−r(T−t)

γb2(α− β)
for p∗(t) 6= 0, 1.

This means that the equilibrium reinsurance proportion decreases with time t for α > β and
increases for α < β. This may be explained as follows. As time goes by, the surpluses of both
the insurer and the reinsurer are expected to increase on average due to the potential gains from
investments in financial assets and this enhances the insurance risk absorbing capacity of both over
time. With α > β, more weight is given to the insurer’s preference in decision, and thus, according
to the insurer’s willingness, more insurance business is retained by the insurer itself at a later
period than an earlier time, leading the reinsurance proportion decreasing as a function of time t.
For α < β, the reinsurer’s preference is given with more priority, and thus the decision allows the
reinsurer to gradually undertake more insurance business from the insurer over time, making the
reinsurance proportion p∗(t) increasing over time.

(c) The effects of market parameters on the reinsurance strategy depend on the decision weights α and
β too. Equation (3.5) shows that

∂p∗

∂a
= −

ηe−r(T−t)

γb2(α− β)
for p∗(t) 6= 0, 1,

which implies that the equilibrium reinsurance strategy increases with a for α < β and decreases
with a for α > β. The parameter a reflects the expectation of the claim size and thus, with the
other model parameters (particularly the volatility b in the claim process (2.1)) fixed, an increase in
the expected claim a reduces the risk per dollar of the insurance liability and makes the insurance
business more attractive to the writer. Therefore, when more weight is given to the insurer in
decision, the reinsurance proportion is reduced and more insurance policies are retained by the
insurer in response of an increase of a. In contrast, if α < β, the reinsurer is given more weight in
decision, and thus, more insurance policies are transferred to the reinsurer with an increase in a.

(d) Since

∂p∗

∂η
= −

ae−r(T−t)

γb2(α− β)
for p∗(t) 6= 0, 1,

the reinsurer’s safety loading η exerts a positive effect on p∗(·) for α < β and a negative effect on
p∗(·) for α > β. This is consistent with our intuition. A larger η means more expensive reinsurance.
Therefore, with α < β the decision-maker places more consideration on the reinsurer, whereby the
reinsurance proportion is increased so that the reinsurer can make more profits in response of an
increase in η. With α > β, the insurer’s preference is laid with more weights so that more risk is
retained by the insurer itself when the reinsurance becomes more expensive, i.e., η increases.

(e) Equation (3.5) shows that

∂p∗

∂γ
=

aηe−r(T−t)

γ2b2(α− β)
for p∗(t) 6= 0, 1,
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which indicates that the equilibrium reinsurance proportion p∗(·) decreases with the risk aversion
coefficient γ of the decision-maker for α < β and increases with γ for α > β. With a decision weight
α < β, the choice of the decision-maker relies on the preference of the reinsurer more than the
insurer. Thus, the more risk averse the reinsurer is, the less reinsurance is taken by the reinsurer,
leading p∗(·) decreasing in γ. Similarly, when α > β, the preference of the insurer is reflected more
in decision, and thus the more risk averse the insurer is, the more risk is ceded to the reinsurer.

(f) From equation (3.5), we obtain

∂p∗

∂b
=

2aηe−r(T−t)

γb3(α− β)
for p∗(t) 6= 0, 1.

If α < β, there is a negative relationship between p∗(·) and the volatility b of the claim process
C, whereas the relationship becomes positive for α > β. This can be interpreted by the change of
the risk per dollar of insurance as similarly commented in part (b). With a larger b, the risk per
dollar of insurance is larger and thus, the insurance business becomes less attractive to an insurance
writer, with more is expected to be ceded to the reinsurer in case a weight α > β is assigned in
decision. Similar explanation applies for the case α < β.

(g) Equation (3.5) also shows that

∂p∗

∂r
=

aη(T − t)e−r(T−t)

γb2(α− β)
for p∗(t) 6= 0, 1.

This indicates that p∗(·) decreases with respect to the risk-free interest rate r for α < β and increases
in r for α > β. As r increases, both the insurer and the reinsurer have the expectation to gain
more in the financial market, driving the capitals out of the insurance market. When α < β, the
interests of the reinsurer dominate the decision on the trading strategy of the insurance group, and
the reinsurer prefers to reduce its investment in insurance market and move more investments to
the financial market. Similarly, when α > β the insurer’s interests dominate the decision and it
is preferred by the insurer that more insurance risk is taken by the reinsurer so that it have more
wealth to invest in the financial market.

4 Numerical analysis

In this section, a numerical example will be presented to illustrate the effects of parameters on the equi-
librium investment-reinsurance strategy derived in Theorem 3.1. Unless otherwise stated, the parameter
values are given by a = 0.5, b = 0.6, η = 0.2, r = 0.05, µ1 = 0.12, σ1 = 0.2, k1 = 0.9, S1 = 0.5, µ2 = 0.15,
σ2 = 0.3, k2 = 1.1, S2 = 0.6, α = 0.3, β = 0.7, γ = 0.5, and T = 10.
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Figure 1 Effect of decision weights α and β on equilibrium reinsurance strategy p∗(t).

Figure 1 shows that the insurance proportion p∗(t) is increasing along with time t for α < β and
decreasing for α > β. Such an observation can be explained as follows. The desire of both the insurer and
the reinsurer to bear insurance risk becomes gradually strengthen as a result of their wealth accumulation
over time. Therefore, both prefer to absorb less insurance risk at the first stage (before time 8) and
become more interested in taking insurance business at the second stage with more capital available.
Consequently, with α < β, more voices are heard from the reinsurer in the decision, and according to the
desire of the reinsurer, more insurance risk is transferred to the reinsurer at a later period than an earlier
period. In contrast, when α > β, the insurer has more voices over the decision, and therefore, according
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to the desire of the insurer, more insurance risk is transferred to the reinsurer at an earlier period than
a later period. Furthermore, Figure 1 also illustrates that the response of reinsurance strategy p∗(t) to
the weights α and β also depends on the relative magnitudes of α and β. For α < β, p∗(t) is decreasing
in both α and β. In contrast, p∗(t) is increasing in both α and β for α > β.

Figures 2-5 show the impacts of market parameters on the equilibrium reinsurance strategy, and the
results consistently confirm our comments presented in Remark 3.5. The effects depend on the value
of the decision weight parameters α and β as well. For α > β, the equilibrium reinsurance proportion
increases with γ, b, r and decreases with t, a, η. In contrast, for α < β, the reinsurance proportion shows
an opposite response to these parameter. It increases with t, a, η and decreases with γ, b, r in this case.
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Figure 2 Effect of a on equilibrium reinsurance strategy p∗(t).
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Figure 3 Effect of b on equilibrium reinsurance strategy p∗(t).
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Figure 4 Effect of η on equilibrium reinsurance strategy p∗(t).
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Figure 5 Effect of γ on equilibrium reinsurance strategy p∗(t).

Figures 6-9 depict the sensitivity of the equilibrium investment strategy (π∗

1(t), π
∗

2(t)) to various model
parameters, where, for simplicity but without loss of generality, the investment strategy is computed only
for time 0. Figure 6(a) shows that the risk aversion coefficient γ exerts a negative effect on both π∗

1(t)
and π∗

2(t). The larger γ is, the more risk averse the insurer and the reinsurer are. Thus, as γ increases,
the insurer and the reinsurer choose to reduce their investments in the risky assets to control their risk.
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Figure 6. (a) Effect of γ on equilibrium investment strategy (π∗

1
(t), π∗
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(t)). (b) Effect of r on equilibrium investment
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(t)).
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Figure 7. (a) Effect of µ1 on insurer’s equilibrium investment strategy π∗

1
(t). (b) Effect of µ2 on reinsurer’s equilibrium

investment strategy π∗

1
(t).

Figure 6(b) demonstrates the negative effect from the return rate of the risk-free asset on the equilibrium
investment strategy (π∗

1(t), π
∗

2(t)), in accordance to the comments in part (f) of Remark 3.5. An increase
of the risk-free return rate r changes the interests of both the insurer and the reinsurer in financial market
and drives capitals out of the insurance market.

Figure 7 demonstrates an increasing trend of π∗

1(t) and π∗

2(t) in response of an increase of µ1 and µ2
respectively. Such a phenomenon is natural, since µ1 and µ2 are respectively the expected return rates of
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risky assets. With the volatility fixed, an asset with a higher expected return is naturally more attractive
to the investors. The decreasing trend of π∗

1(t) and π∗

2(t) with respect to the corresponding volatility as
demonstrated in Figure 8 can be explained by the same reason.

Figure 9 shows that π∗

1(t) and π∗

2(t) are increasing functions of k1 and k2 respectively. Such an
observation is consistent to the economic meanings of the parameters k1 and k2 in models (2.4) and (2.5).
Larger values for k1 and k2 lead to more probability of larger positive movement in prices of the risky
assets, and hence encourage the insurer and the reinsurer to increase their positions in the risky assets.
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Figure 8. (a) Effect of σ1 on insurer’s equilibrium investment strategy π∗

1
(t). (b) Effect of σ2 on reinsurer’s equilibrium

investment strategy π∗

1
(t).
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Figure 9. (a) Effect of k1 on insurer’s equilibrium investment strategy π∗

1
(t). (b) Effect of k2 on reinsurer’s equilibrium

investment strategy π∗

1
(t).

5 Conclusion

The investment-reinsurance problem is one of the fascinating topics in actuarial science, and it was
commonly discussed only from the insurer’s perspective. In this paper, we proposed a formulation to
jointly take into account the interests of both the insurer and reinsurer, and developed a time-consistent
solution by resorting to the equilibrium strategies. The theory on the investment-reinsurance problems
by combing the interests of both the insurer and the reinsurer remains scarce in the literature, and we
hope this paper can promote more research in this direction.
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Appendix A Proof of Theorem 2.3

The proof will be obtained in the following three steps. for the case that α = 1
2 , the proof is similar.

Step 1: Consider an arbitrary strategy u ∈ U(t, z, s1, s2). We first show that if Y (t, z, s1, s2) ∈
D1,2([0, T ]×Q), then

∫ T

t

Yz(v, Z
u(v), S1(v), S2(v))ασ1π1(v) [S1(v)]

k1 dW1(v), (A.1)

∫ T

t

Yz(v, Z
u(v), S1(v), S2(v))βσ2π2(v) [S2(v)]

k2 dW2(v), (A.2)

∫ T

t

Ys1(v, Z
u(v), S1(v), S2(v))σ1 [S1(v)]

k1+1
dW1(v), (A.3)

and ∫ T

t

Ys2(v, Z
u(v), S1(v), S2(v))σ2 [S2(v)]

k2+1 dW2(v) (A.4)

are all martingales for ∀(z, s1, s2) ∈ Q and ∀u ∈ U(t, z, s1, s2). In fact, since Y (t, z, s1, s2) ∈ D1,2([0, T ]×
Q), there must exist two constants κ > 0 and ρ > 1 such that

|Yz(t, z, s1, s2)| 6 κ(1 + |z|ρ + |s1|
ρ + |s2|

ρ).

Moreover, for (t, z, s1, s2) ∈ [0, T ]×Q and u ∈ U(t, z, s1, s2), (2.8) implies

Et,z,s1,s2

(
sup

v∈[t,T ]

|Zu(v)|ρ

)
< ∞, ∀ρ > 1. (A.5)

Applying Itô’s formula to m(t) := (S1(t))
−2k1 yields

dm(t) =
(
k1(2k1 + 1)σ2

1 − 2k1µ1m(t)
)
dt− 2k1σ1

√
m(t)dW1(t). (A.6)

This implies that m(t) is a process similar to νt defined in equation (10.48) in [48]. Thus according to
Theorem 10.34 in [48], there exists a unique non-negative strong solution to equation (A.6). Moreover,
let τ = inf{t > 0|m(t) = 0} and τ = ∞ if m(t) > 0 for any t. Proposition 10.35 in [48] shows that
for any m(0) = (S1(0))

−2k1 > 0, if k1 > 0, τ = ∞, a.s., which means that m(t) = (S1(t))
−2k1 is almost

surely inaccessible to zero. Therefore, S1(t) < ∞. Similarly, we can show that S2(t) < ∞ for k2 > 0. We
combine all the above analysis to obtain

Et,z,s1,s2

{∫ T

t

|Yz(v, Z
u(v), S1(v), S2(v))ασ1π1(v) (S1(v))

k1 |2dv

}

6
1
2Et,z,s1,s2

{∫ T

t

[(
Yz(v, Z

u(v), S1(v), S2(v))ασ1 (S1(v))
k1

)4
+ (π1(v))

4

]
dv

}

6
1
2Et,z,s1,s2

{∫ T

t

[
α4σ4

1

(
(Yz(v, Z

u(v), S1(v), S2(v)))
8
+ (S1(v))

8k1

)
+ (π1(v))

4
]
dv

}

6 1
2Et,z,s1,s2

{∫ T

t

[
α4σ4

1

(
κ8 (1 + |Zu(v)|ρ + |S1(v)|

ρ + |S2(v)|
ρ)8 + (S1(v))

8k1

)
+ (π1(v))

4
]
dv

}

< ∞.

Similarly, we can prove that

Et,z,s1,s2

{∫ T

t

|Yz(v, Z
u(v), S1(v), S2(v))βσ2π2(v) (S2(v))

k2 |2dv

}
< ∞,

Et,z,s1,s2

{∫ T

t

|Ys1(v, Z
u(v), S1(v), S2(v))σ1 (S1(v))

k1+1
|2dv

}
< ∞,

Et,z,s1,s2

{∫ T

t

|Ys2(v, Z
u(v), S1(v), S2(v))σ2 (S2(v))

k2+1
|2dv

}
< ∞.
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Thus, (A.1), (A.2), (A.3) and (A.4) are all martingales.
Next, we show that if a real value function Y (t, z, s1, s2) ∈ D1,2([0, T ]×Q) satisfies

AuY (t, z, s1, s2) = 0, Y (T, z, s1, s2) = z, ∀(t, z, s1, s2) ∈ ([0, T ]× R× R
+ × R

+), (A.7)

then
Y (t, z, s1, s2) = gu(t, z, s1, s2). (A.8)

Using (2.9) and Itô’s formula, we derive

Y (t, Zu(t), S1(t), S2(t))

= Y (T, Zu(T ), S1(T ), S2(T ))−

∫ T

t

dY (v, Zu(v), S1(v), S2(v))

= Y (T, Zu(T ), S1(T ), S2(T ))−

∫ T

t

AuY (v, Zu(v), S1(v), S2(v))dv

−

∫ T

t

{
Yz(v, Z

u(v), S1(v), S2(v))
[
ασ1π1(v) (S1(v))

k1 dW1(v)

+βσ2π2(v) (S2(v))
k2 dW2(v) + (αb− b(α− β)p(v)) dW (v)

]

+Ys1(v, Z
u(v), S1(v), S2(v))σ1 (S1(v))

k1+1
dW1(v)

+Ys2(v, Z
u(v), S1(v), S2(v))σ2 (S2(v))

k2+1 dW2(v)
}
.

(A.9)

Since (A.1), (A.2), (A.3) and (A.4) are martingales, taking the conditional expectation on both sides of
equation (A.9) and applying equations (A.7) and (2.13), we have

Y (t, z, s1, s2) = Et,z,s1,s2 [Y (t, Zu(t), S1(t), S2(t))]

= Et,z,s1,s2 [Y (T, Zu(T ), S1(T ), S2(T ))]

= Et,z,s1,s2 [Z
u(T )] = gu(t, z, s1, s2).

(A.10)

Similar to the above derivation, we can show that if there exists a real function J(t, z, s1, s2) ∈
D1,2([0, T ]×Q) such that

AuJ(t, z, s1, s2) = 0 and J(T, z, s1, s2) = z2, ∀(t, z, s1, s2) ∈ ([0, T ]×Q), (A.11)

then
J(t, z, s1, s2) = hu(t, z, s1, s2). (A.12)

Thirdly, we use (A.7) and (A.11) to develop an expression for

fu(t) := f(t, Zu(t), S1(t), S2(t), Y
u(t), Ju(t)).

where Y u(t) = Y (t, Zu(t), S1(t), S2(t)) and Ju(t) = J(t, Zu(t), S1(t), S2(t)). In view of (A.8) and (A.12),
we get

f(t, Zu(t), S1(t), S2(t), g
u(t, Zu(t), S1(t), S2(t)), h

u(t, Zu(t), S1(t), S2(t))) = fu(t).

Let ξu(t) = ξu (t, Zu(t), S1(t), S2(t)). We apply Itô’s formula and equation (2.9) to obtain

fu(T ) = fu(t) +

∫ T

t

dfu(v)

= fu(t) +

∫ T

t

[
fu
g (v)A

uY u(v) + fu
g (v)A

uJu(v) + ξu(v)
]
dv

+

∫ T

t

{
(
fu
z (v) + fu

g (v)Y
u
z (v) + fu

h (v)J
u
z (v)

) [
(αb− αbp(v) + bβp(v)) dW (v)

+ασ1π1(v) (S1(v))
k1 dW1(v) + βσ2π2(v) (S2(v))

k2 dW2(v)
]

+
(
fu
s1
(v) + fu

g (v)Y
u
s1
(v) + fu

h (v)Js1 (v)
)
σ1 (S1(v))

k1+1
dW1(v)

+
(
fu
s2
(v) + fu

g (v)Ys2 (v) + fu
h (v)Js2 (v)

)
σ2 (S2(v))

k2+1
dW2(v)

}
.
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Inputting (A.7) and (A.11) into the above equation implies

fu(T ) = fu(t) +

∫ T

t

ξu(v)dv +

∫ T

t

{
(
fu
z (v) + fu

g (v)Y
u
z (v) + fu

h (v)J
u
z (v)

)

×
[
(αb− αbp(v) + bβp(v)) dW (v) + ασ1π1(v) (S1(v))

k1 dW1(v)

+βσ2π2(v) (S2(v))
k2 dW2(v)

]
+
(
fu
s1
(v) + fu

g (v)Y
u
s1
(v)

+fu
h (v)J

u
s1
(v)
)
σ1 (S1(v))

k1+1 dW1(v)

+
(
fu
s2
(v) + fu

g (v)Y
u
s2
(v) + fu

h (v)J
u
s2
(v)
)
σ2 (S2(v))

k2+1 dW2(v)

}
.

(A.13)

Finally, we show that ∀(t, z, s1, s2) ∈ ([0, T ]×Q),

F (t, z, s1, s2) > sup
u∈U(t,z,s1,s2)

f(t, z, s1, s2, g
u(t, z, s1, s2), h

u(t, z, s1, s2)). (A.14)

Let Fu(t) := F (t, Zu(t), S1(t), S2(t)) for short. We apply (2.9) to obtain

Fu(t) = Fu(T )−

∫ T

t

dFu(v)

= Fu(T )−

∫ T

t

AuFu(v)dv −

∫ T

t

{
Fu
z (v)

[
(αb− αbp(v) + bβp(v)) dW (v)

+ασ1π1(v) (S1(v))
k1 dW1(v) + βσ2π2(v) (S2(v))

k2 dW2(v)
]

+Fu
s1
(v)σ1 (S1(v))

k1+1
dW1(v) + Fu

s2
(v)σ2 (S2(v))

k2+1
dW2(v)

}
.

Besides, (2.18) implies that AuF (t, z, s1, s2) 6 ξu(t, z, s1, s2) for ∀(t, z, s1, s2) ∈ ([0, T ]×Q), and hence,

Fu(t) > Fu(T )−

∫ T

t

ξu(v)dv −

∫ T

t

{
Fu
z (v)

[
(αb − αbp(v) + bβp(v)) dW (v)

+ασ1π1(v) (S1(v))
k1 dW1(v) + βσ2π2(v) (S2(v))

k2 dW2(v)
]

+Fu
s1
(v)σ1 (S1(v))

k1+1
dW1(v) + Fu

s2
(v)σ2 (S2(v))

k2+1
dW2(v)

}
.

(A.15)

Moreover, equation (2.18) also implies that Fu(T ) = fu(T ). Hence, inputting (A.13) into (A.15) gives

Fu(t) > fu(t) +

∫ T

t

{
(
fu
z (v) + fu

g (v)Y
u
z (v) + fu

h (v)J
u
z (v)− Fu

z (v)
)

×
[
(αb − αbp(v) + bβp(v)) dW (v) + ασ1π1(v) (S1(v))

k1 dW1(v)

+βσ2π2(v) (S2(v))
k2 dW2(v)

]
+
(
fu
s1
(v) + fu

g (v)Y
u
s1
(v) + fu

h (v)J
u
s1
(v)

−Fu
s1
(v)
)
σ1 (S1(v))

k1+1 dW1(v) +
(
fu
s2
(v) + fu

g (v)Y
u
s2
(v) + fu

h (v)J
u
s2
(v)

−Fu
s2
(v)
)
σ2 (S2(v))

k2+1
dW2(v)

}
.

(A.16)

Taking conditional expectation on both sides of the above equation and supremum over U(t, z, s1, s2), we
get (A.14).

Step 2: Consider the specific admissible strategy π∗. The assumptions of Theorem 2.3 show that
G(t, z, s1, s2) andH(t, z, s1, s2) satisfy (A.7) and (A.11) with strategy u∗. Thus, G(t, z, s1, s2) = gu

∗

(t, z, s1, s2)
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and H(t, z, s1, s2) = hu∗

(t, z, s1, s2). Moreover, the inequality (A.16) at u = u∗ becomes an equation, i.e.,

Fu∗

(t) = fu∗

(t) +

∫ T

t

{
(
fu∗

z (v) + fu∗

g (v)Y u∗

z (v) + fu∗

h (v)Ju∗

z (v)− Fu∗

z (v)
)

×
[
(αb − αbp(v) + bβp(v)) dW (v) + ασ1π

∗

1(v) (S1(v))
k1 dW1(v)

+βσ2π
∗

2(v) (S2(v))
k2 dW2(v)

]
+
(
fu∗

s1
(v) + fu∗

g (v)Y u∗

s1
(v)

+fu∗

h (v)Ju∗

s1
(v) − Fu∗

s1
(v)
)
σ1 (S1(v))

k1+1
dW1(v) +

(
fu∗

s2
(v) + fu∗

g (v)Y u∗

s2
(v)

+fu∗

h (v)Ju∗

s2
(v) − Fu∗

s2
(v)
)
σ2 (S2(v))

k2+1
dW2(v)

}
.

(A.17)

By taking conditional expectation on both sides of (A.17), equation (A.17) reduces to

F (t, z, s1, s2) = f(t, z, s1, s2, g
u∗

(t), hu∗

(t)) 6 sup
u∈U(t,z,s1,s2)

f(t, z, s1, s2, g
u(t), hu(t)),

which together with (A.14) gives

F (t, z, s1, s2) = sup
u∈U(t,z,s1,s2)

f(t, z, s1, s2, g
u(t), hu(t)).

Thus, u∗ is optimal and the supremum of fu(t) is F (t, z, s1, s2).

Step 3: Prove u∗ is indeed an equilibrium strategy. For any uτ defined in Definition 2.2 and t + τ , we
rewrite (A.13) as

fuτ (t+ τ) = fuτ (t) +

∫ t+τ

t

ξuτ (v)dv +

∫ t+τ

t

{(
fuτ

z (v) + fuτ

g (v)Y uτ

z (v)

+fuτ

h (v)Juτ

z (v))
[
(αb− αbp(v) + bβp(v)) dW (v) + ασ1π1(v) (S1(v))

k1 dW1(v)

+βσ2π2(v) (S2(v))
k2 dW2(v)

]
+
(
fuτ

s1
(v) + fuτ

g (v)Y uτ

s1
(v)

+fuτ

h (v)Juτ

s1
(v)
)
σ1 (S1(v))

k1+1
dW1(v) +

(
fuτ

s2
(v) + fuτ

g (v)Y uτ

s2
(v)

+fuτ

h (v)Juτ

s2
(v)
)
σ2 (S2(v))

k2+1 dW2(v)
}
.

(A.18)

Replacing T by t+ τ and u by u∗ in (A.15), we obtain

Fu∗

(t) > Fu∗

(t+ τ) −

∫ t+τ

t

ξu
∗

(v)dv −

∫ t+τ

t

{
Fu∗

z (v)
[
(αb − αbp(v) + bβp(v)) dW (v)

+ασ1π1(v) (S1(v))
k1 dW1(v) + βσ2π2(v) (S2(v))

k2 dW2(v)
]

+Fu∗

s1
(v)σ1 (S1(v))

k1+1
dW1(v) + Fu∗

s2
(v)σ2 (S2(v))

k2+1
dW2(v)

}
.

(A.19)

Based on the definition of uτ , we have fuτ (t+ τ) 6 Fu∗

((t+ τ)). Hence, substituting (A.18) into (A.19)
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gives

Fu∗

(t) > fuτ (t) +

∫ t+τ

t

ξuτ (v)dv −

∫ t+τ

t

ξu
∗

(v)dv +

∫ t+τ

t

{(
fuτ

z (v) + fuτ

g (v)Y uτ

z (v)

+fuτ

h (v)Juτ

z (v))
[
(αb − αbp(v) + bβp(v)) dW (v) + ασ1π1(v) (S1(v))

k1 dW1(v)

+βσ2π2(v) (S2(v))
k2 dW2(v)

]
+
(
fuτ

s1
(v) + fuτ

g (v)Y uτ

s1
(v)

+fuτ

h (v)Juτ

s1
(v)
)
σ1 (S1(v))

k1+1 dW (v) +
(
fuτ

s2
(v) + fuτ

g (v)Y uτ

s2
(v) + fuτ

h (v)Juτ

s2
(v)
)

×σ2 (S2(v))
k2+1

dW (v)
}
−
∫ (t+τ)

t

{
Fu∗

z (v)
[
(αb − αbp(v) + bβp(v)) dW (v)

+ασ1π1(v) (S1(v))
k1 dW1(v) + βσ2π2(v) (S2(v))

k2 dW2(v)
]

+Fu∗

s1
(v)σ1 (S1(v))

k1+1 dW1(v) + Fu∗

s2
(v)σ2 (S2(v))

k2+1 dW2(v)
}
.

(A.20)

Noting that Fu∗

(t) = fu∗

(t) and taking conditional expectation on both sides of (A.20), we obtain

fu∗

(t) > fuτ (t) + Et,z,s1,s2

[∫ t+τ

t

ξuτ (v)dv −

∫ t+τ

t

ξu
∗

(v)dv

]
,

which implies

lim
τ→0

inf
fu∗

(t)− fuτ (t)

τ
> 0,

and thus the proof is complete. 2

Appendix B Proof of Theorem 3.1

Suppose that three real functions F (t, z, s1, s2), G(t, z, s1, s2) and H(t, z, s1, s2) satisfy the conditions
given in Theorem 2.3 and Πu

1 > Fzz(t, z, s1, s2) for all (t, z, s1, s2) ∈ [0, T ]×R×Q and u ∈ U(t, z, s1, s2).
Equation (2.15) indicates that

ft = fz = fs1 = fs2 = fzz = fzg = fzh = fgh = fzs1 = fgs1 = fhs1 = fzs2 = fgs2 = fhs2

= fhh = fs1s1 = fs2s2 = 0, fg = 1 + γg, fh = −
γ

2
, fgg = γ.

(B.1)

From (2.22) and (2.23), we obtain

Πu
1 = γ(guz )

2, Πu
2 = γ(gus1)

2 Πu
3 = γ(gus2)

2, Πu
4 = γguz g

u
s1
, Πu

5 = γguz g
u
s2
,

ξu(t, z, s1, s2) =
γ

2

[
α2π2

1σ
2
1s

2k1
1 + β2π2

2σ
2
2s

2k2
2 + (αb − bp(α− β))2

]
(guz )

2

+
γ

2
σ2
1s

2k1+2
1 (gus1)

2 +
γ

2
σ2
2s

2k2+2
2 (gus2)

2 + γαπ1σ
2
1s

2k1+1
1 guz g

u
s1

+ γβπ2σ
2
2s

2k2+1
2 guz g

u
s2
.

(B.2)

Inputting (2.17) and (B.2) into (2.18), we have

supu∈U(t,z,s1,s2)

{
Ft + [rz + απ1(µ1 − r) + βπ2(µ2 − r) + aαθ − aηp(α− β)]Fz + µ1s1Fs1

+µ2s2Fs2 +
1
2

[
α2π2

1σ
2
1s

2k1

1 + β2π2
2σ

2
2s

2k2

2 + α2b2 − 2αb2p(α− β) + b2p2(α− β)2
]
Fzz

+ 1
2σ

2
1s

2k1+2
1 Fs1s1 +

1
2σ

2
2s

2k2+2
2 Fs2s2 + απ1σ

2
1s

2k1+1
1 Fzs1 + βπ2σ

2
2s

2k2+1
2 Fzs2

− γ
2

(
α2π2

1σ
2
1s

2k1
1 + β2π2

2σ
2
2s

2k2
2 +

(
αb − bp(α− β)2

)2)
G2

z −
γ
2σ

2
1s

2k1+2
1 G2

s1
− γ

2σ
2
2s

2k2+2
2 G2

s2

−γαπ1σ
2
1s

2k1+1
1 GzGs1 − γβπ2σ

2
2s

2k2+1
2 GzGs2

}
= 0.
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Differentiating (2.18) with respect to π1, π2, p respectively and using (2.21), we obtain the following
first-order optimality conditions:





π∗

1 =
−(µ1 − r)Fz − σ2

1s
2k1+1
1 Fzs1 + γσ2

1s
2k1+1
1 GzGs1

ασ2
1s

2k1
1 [Fzz − γG2

z]
,

π∗

2 =
−(µ2 − r)Fz − σ2

2s
2k2+1
2 Fzs2 + γσ2

2s
2k2+1
2 GzGs2

βσ2
2s

2k2
2 [Fzz − γG2

z]
,

(B.3)

and

p0 =
α

α− β
+

aηFz

(α− β)b2[Fzz − γG2
z]
. (B.4)

The expressions for π1∗ and π∗

2 in (B.3) depend on function F and G. As it can be seen shortly, however,
they eventually have a uniform expressions as given in (3.3) and (3.4).

To proceed, define sets

A1 =
{
(t, z, s1, s2) ∈ [0, T ]×Q; 0 6 p0 6 1

}
,

A2 =
{
(t, z, s1, s2) ∈ [0, T ]×Q; p0 < 0

}
,

A3 =
{
(t, z, s1, s2) ∈ [0, T ]×Q; p0 > 1

}
.

For (t, z, s1, s2) ∈ A1, the supremum of (2.18) over p is attained at p0 given by (B.3). Introducing (B.3)
and (B.4) into (2.18) and (2.19) gives

Ft + (rz + aα(θ − η))Fz + µ1s1Fs1 + µ2s2Fs2 +
1

2
σ2
1s

2k1+2
1 Fs1s1

+
1

2
σ2
2s

2k2+2
2 Fs2s2 −

γ

2
σ2
1s

2k1+2
1 G2

s1
−

γ

2
σ2
2s

2k2+2
2 G2

s2
−

a2η2F 2
z

2b2(Fzz − γG2
z)

−

[
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

]2

2σ2
1s

2k1
1 (Fzz − γG2

z)

−

[
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

]2

2σ2
2s

2k2

2 (Fzz − γG2
z)

= 0,

(B.5)

and

Gt + (rz + aα(θ − η))Gz + µ1s1Gs1 + µ2s2Gs2 +
1

2
σ2
1s

2k1+2
1 Gs1s1 +

1

2
σ2
2s

2k2+2
2 Gs2s2

−
a2η2Fz

b2(Fzz − γG2
z)

(
Gz −

FzGzz

2(Fzz − γG2
z)

)
−

(µ1 − r)Fz + σ2
1s

2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

(Fzz − γG2
z)

×


µ1 − r

σ2
1s

2k1
1

Gz + s1Gzs1 −

[
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

]

2σ2
1s

2k1
1 (Fzz − γG2

z)
Gzz




−
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

(Fzz − γG2
z)

[
µ2 − r

σ2
2s

2k2
2

Gz + s2Gzs2

−
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

2σ2
2s

2k2
2

(Fzz − γG2
z)Gzz

]
= 0.

(B.6)

For (t, z, s1, s2) ∈ A2, (2.18) reaches its maximum at p∗ = 0. Consequently, (2.18) and (2.19) respectively
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become

Ft + (rz + aαθ)Fz + µ1s1Fs1 + µ2s2Fs2 +
1

2
σ2
1s

2k1+2
1 Fs1s1 +

1

2
σ2
2s

2k2+2
2 Fs2s2

−
γ

2
σ2
1s

2k1+2
1 G2

s1
−

γ

2
σ2
2s

2k2+2
2 G2

s2
+

1

2
α2b2Fzz −

γ

2
α2b2G2

z

−

[
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

]2

2σ2
1s

2k1
1 (Fzz − γG2

z)

−

[
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

]2

2σ2
2s

2k2
2 (Fzz − γG2

z)
= 0

(B.7)

and

Gt + (rz + aαθ)Gz + µ1s1Gs1 + µ2s2Gs2 +
1

2
σ2
1s

2k1+2
1 Gs1s1 +

1

2
σ2
2s

2k2+2
2 Gs2s2

+
1

2
α2b2Gzz −

(µ1 − r)Fz + σ2
1s

2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

(Fzz − γG2
z)

×


µ1 − r

σ2
1s

2k1
1

Gz + s1Gzs1 −

[
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

]

2σ2
1s

2k1
1 (Fzz − γG2

z)
Gzz




−
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

(Fzz − γG2
z)

×

[
µ2 − r

σ2
2s

2k2
2

Gz + s2Gzs2 −
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

2σ2
2s

2k2
2 (Fzz − γG2

z)
Gzz

]
= 0.

(B.8)

Similarly, the maximum of (2.18) over p on A3 is attained at p∗ = 1. Putting (B.3) and p∗ = 1 into
(2.18) and (2.19) gives

Ft + (rz + aα(θ − 2η) + aη)Fz + µ1s1Fs1 + µ2s2Fs2 +
1

2
σ2
1s

2k1+2
1 Fs1s1 +

1

2
σ2
2s

2k2+2
2 Fs2s2

−
γ

2
σ2
1s

2k1+2
1 G2

s1
−

γ

2
σ2
2s

2k2+2
2 G2

s2
+

1

2

[
α2b2 − 2αb2(α− β) + b2(α− β)2

]
(Fzz − γG2

z)

−

[
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

]2

2σ2
1s

2k1
1 (Fzz − γG2

z)

−

[
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

]2

2σ2
2s

2k2
2 (Fzz − γG2

z)
= 0

(B.9)
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and

Gt + (rz + aα(θ − 2η) + aη)Gz + µ1s1Gs1 + µ2s2Gs2 +
1

2
σ2
1s

2k1+2
1 Gs1s1

+
1

2
σ2
2s

2k2+2
2 Gs2s2 +

1

2

[
α2b2 − 2αb2(α− β) + b2(α− β)2

]
Gzz

−
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

(Fzz − γG2
z)

×


µ1 − r

σ2
1s

2k1
1

Gz + s1Gzs1 −

[
(µ1 − r)Fz + σ2

1s
2k1+1
1 Fzs1 − γσ2

1s
2k1+1
1 GzGs1

]

2σ2
1s

2k1
1 (Fzz − γG2

z)
Gzz




−
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

(Fzz − γG2
z)

×

[
µ2 − r

σ2
2s

2k2
2

Gz + s2Gzs2 −
(µ2 − r)Fz + σ2

2s
2k2+1
2 Fzs2 − γσ2

2s
2k2+1
2 GzGs2

2σ2
2s

2k2
2 (Fzz − γG2

z)
Gzz

]
= 0.

(B.10)

The above three pairs of equations can be solved by the same procedure and we demonstrate the
procedure with the pair of (B.5) and (B.6) only. To proceed, we conjecture the solutions in the following
form:

F (t, z, s1, s2) = A1(t)z +
B1(t)

γ
s−2k1
1 +

C1(t)

γ
s−2k2
2 +

D1(t)

γ
, (B.11)

G(t, z, s1, s2) = A2(t)z +
B2(t)

γ
s−2k1
1 +

C2(t)

γ
s−2k2
2 +

D2(t)

γ
(B.12)

with boundary conditions A1(T ) = A2(T ) = 1, B1(T ) = C1(T ) = D1(T ) = B2(T ) = C2(T ) = D2(T ) = 0.
Then

Ft = A′

1(t)z +
B′

1(t)
γ

s−2k1
1 +

C′

1(t)
γ

s−2k2
2 +

D′

1(t)
γ

, Fz = A1(t), Fs1 = −2k1B1(t)
γ

s−2k1−1
1 ,

Fs2 = −2k2C1(t)
γ

s−2k2−1
2 , Fs1s1 = 2k1(2k1+1)B1(t)

γ
s−2k1−2
1 , Fs2s2 = 2k2(2k2+1)C1(t)

γ
s−2k2−2
2 ,

Fzz = Fzs1 = Fzs2 = Fs1s2 = 0, Gt = A′

2(t)z +
B′

2(t)
γ

s−2k1
1 +

C′

2(t)
γ

s−2k2
2 +

D′

2(t)
γ

,

Gz = A2(t), Gs1s1 = 2k1(2k1+1)B2(t)
γ

s−2k1−2
1 , Gs2s2 = 2k2(2k2+1)C2(t)

γ
s−2k2−2
2 ,

Gs1 = −2k1B2(t)
γ

s−2k1−1
1 , Gs2 = −2k2C2(t)

γ
s−2k2−1
2 , Gzz = Gzs1 = Gzs2 = Gs1s2 = 0.

Substituting the above derivatives into (B.5) and (B.6) yields

(A′

1(t) + rA1(t)) z +

(
B′

1(t)− 2k1µ1B1(t)− 2σ2
1k

2
1B

2
2(t)

+
[(µ1 − r)A1(t) + 2σ2

1k1A2(t)B2(t)]
2

2σ2
1A

2
2(t)

)
s−2k1
1

γ
+

(
C′

1(t)− 2k2µ2C1(t)− 2σ2
2k

2
2C

2
2 (t)

+
[(µ2 − r)A1(t) + 2σ2

2k2A2(t)C2(t)]
2

2σ2
2A

2
2(t)

)
s−2k2
2

γ
+

D′

1(t)

γ
+ aα(θ − η)A1(t)

+
1

γ
σ2
1k1(2k1 + 1)B1(t) +

1

γ
σ2
2k2(2k2 + 1)C1(t) +

a2η2A2
1(t)

2γb2A2
2(t)

= 0

(B.13)
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and

(A′

2(t) + rA2(t)) z +

(
B′

2(t) − 2k1µ1B2(t)

+
(µ1 − r)2A1(t) + 2k1σ

2
1(µ1 − r)A2(t)B2(t)

σ2
1A2(t)

)
s−2k1
1

γ
+

(
C′

2(t)− 2k2µ2C2(t)

+
(µ2 − r)2A1(t) + 2k2σ

2
2(µ2 − r)A2(t)C2(t)

σ2
2A2(t)

)
s−2k2
2

γ
+

D′

2(t)

γ
+ aα(θ − η)A2(t)

+
1

γ
σ2
1k1(2k1 + 1)B2(t) +

1

γ
σ2
2k2(2k2 + 1)C2(t) +

a2η2A2
1(t)

γb2A2(t)
= 0.

(B.14)

In order to eliminate the dependence on z, s1 and s2, we can decompose (B.13) and (B.14) into

A′

1(t) + rA1(t) = 0, (B.15)

B′

1(t)− 2k1µ1B1(t)− 2σ2
1k

2
1B

2
2(t) +

[(µ1 − r)A1(t) + 2σ2
1k1A2(t)B2(t)]

2

2σ2
1A

2
2(t)

= 0, (B.16)

C′

1(t)− 2k2µ2C1(t)− 2σ2
2k

2
2C

2
2 (t) +

[(µ2 − r)A1(t) + 2σ2
2k2A2(t)C2(t)]

2

2σ2
2A

2
2(t)

= 0, (B.17)

D′

1(t)

γ
+ aα(θ − η)A1(t) +

1

γ
σ2
1k1(2k1 + 1)B1(t) +

1

γ
σ2
2k2(2k2 + 1)C1(t) +

a2η2A2
1(t)

2γb2A2
2(t)

= 0, (B.18)

A′

2(t) + rA2(t) = 0, (B.19)

B′

2(t)− 2k1µ1B2(t) +
(µ1 − r)2A1(t) + 2k1σ

2
1(µ1 − r)A2(t)B2(t)

σ2
1A2(t)

= 0, (B.20)

C′

2(t)− 2k2µ2C2(t) +
(µ2 − r)2A1(t) + 2k2σ

2
2(µ2 − r)A2(t)C2(t)

σ2
2A2(t)

= 0, (B.21)

D′

2(t)

γ
+ aα(θ − η)A2(t) +

1

γ
σ2
1k1(2k1 + 1)B2(t) +

1

γ
σ2
2k2(2k2 + 1)C2(t) +

a2η2A2
1(t)

γb2A2(t)
= 0. (B.22)

Considering the boundary conditions, we obtain

A1(t) = A2(t) = er(T−t),

B1(t) =
(µ1 − r)2

2k1σ2
1r

[
e−2k1µ1(T−t) − e−2k1r(T−t)

]
+

(µ1 − r)2(2µ1 − r)

4k1µ1rσ2
1

[
1− e−2k1µ1(T−t)

]
,

C1(t) =
(µ2 − r)2

2k2σ2
2r

[
e−2k2µ2(T−t) − e−2k2r(T−t)

]
+

(µ2 − r)2(2µ2 − r)

4k2µ2rσ2
2

[
1− e−2k2µ2(T−t)

]
,

D1(t) =
γaα(θ − η)

r

(
er(T−t) − 1

)
+

a2η2

2b2
(T − t) + σ2

1k1(2k1 + 1)
∫ T

t
B1(s)ds

+σ2
2k2(2k2 + 1)

∫ T

t
C1(s)ds.

B2(t) =
(µ1 − r)2

2k1σ2
1r

(
1− e−2k1r(T−t)

)
, C2(t) =

(µ2 − r)2

2k2σ2
2r

(
1− e−2k2r(T−t)

)
,

D2(t) =
γaα(θ − η)

r

(
er(T−t) − 1

)
+

a2η2

2b2
(T − t) + σ2

1k1(2k1 + 1)
∫ T

t
B2(s)ds

+σ2
2k2(2k2 + 1)

∫ T

t
C2(s)ds.

(B.23)

In the rest of the proof, we shall discuss the equilibrium strategies in each of the cases as listed in
Table 1. We shall rely on the first-order conditions given in B.3 and B.4, the procedure as demonstrated
in the above for solving the three pairs of equations, as well as the continuity of the functions F and G.
To proceed, we note that the supreme in (2.18) is attained at p∗(t) = 0 for p0(t) < 0 and p∗(t) = 1 for
p0(t) > 1; moreover, according to (B.4), 0 6 p0 6 1 if and only if t1 6 t 6 t2, where t1 and t2 are given
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in ((3.1)) and ((3.2)) respectively. The solutions are obtained by checking when the condition 0 6 p0 6 1
is satisfied or not over the investment time horizon as given below for each case outlined in Table 1.

Case III: In each of these four cases, t1 and t2 satisfy t1 < 0 < T 6 t2 and therefore the equilibrium
reinsurance strategy is

p∗(t) = p0(t), 0 6 t 6 T.

The above derivation gives F and G expressed in (B.11) and (B.12) with A1(t), B1(t), C1(t), D1(t), A2(t),
B2(t), C2(t), D2(t) given in (B.23). Inserting (B.11) and (B.12) into (B.3), we derive (3.3) and (3.4).

Case V: In each of the two cases, we have 0 6 t1 < T 6 t2 and hence,

p∗(t) =

{
0, 0 6 t < t1,

p0(t), t1 6 t 6 T.

Similar to the preceding case, we obtain the expression of F and G as following:

F (t, z, s1, s2) =





A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D̃1(t)

γ
, 0 6 t < t1,

A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D1(t)

γ
, t1 6 t 6 T,

(B.24)

and

G(t, z, s1, s2) =





A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D̃2(t)

γ
, 0 6 t < t1,

A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D2(t)

γ
, t1 6 t 6 T,

(B.25)

where A1(t), B1(t), C1(t), D1(t), A2(t), B2(t), C2(t) and D2(t) are given in (B.23) and

D̃1(t) =
γaαθ

r

[
er(T−t) − 1

]
+

γaαη

r

[
1− er(T−t1)

]
+

γ2α2b2

4r

[
e2r(T−t1) − e2r(T−t)

]

+
a2η2

2b2
(T − t1) + σ2

1k1(2k1 + 1)

∫ T

t

B1(s)ds+ σ2
2k2(2k2 + 1)

∫ T

t

C1(s)ds,

D̃2(t) =
γaαθ

r

[
er(T−t) − 1

]
+

γaαη

r

[
1− er(T−t1)

]
+

a2η2

b2
(T − t1)

+σ2
1k1(2k1 + 1)

∫ T

t

B2(s)ds+ σ2
2k2(2k2 + 1)

∫ T

t

C2(s)ds.

(B.26)

Equations (B.24) and (B.25) give the equilibrium investment strategies expressed as in (3.3) and (3.4).

Case VI: In this case, 0 < T 6 t1 < t2 and thus,

p∗(t) = 0, 0 6 t 6 T.

For 0 6 t 6 T , F and G satisfy equations (B.7) and (B.8). Considering the boundary conditions in (2.18)
and (2.19), we obtain

F (t, z, s1, s2) = A1(t)z +
B1(t)

γ
s−2k1

1 + C1(t)
γ

s−2k2

2 + D̃1(t)
γ

,

G(t, z, s1, s2) = A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D̃2(t)

γ
,

(B.27)

where

D̃1(t) =
γaαθ

r

[
er(T−t) − 1

]
+

γ2α2b2

4r

[
1− e2r(T−t)

]
+ σ2

1k1(2k1 + 1)

∫ T

t

B1(s)ds

+σ2
2k2(2k2 + 1)

∫ T

t

C1(s)ds,

D̃2(t) =
γaαθ

r

[
er(T−t) − 1

]
+ σ2

1k1(2k1 + 1)

∫ T

t

B2(s)ds+ σ2
2k2(2k2 + 1)

∫ T

t

C2(s)ds

(B.28)



24 Zhao H et al. Sci China Math for Review

and A1(t), B1(t), C1(t), A2(t), B2(t) and C2(t) are defined in (B.23). Inserting (B.27) into (B.3) yields
(3.3) and (3.4).

Cases IV, IX: In each of the two cases, 0 6 t1 < t2 6 T and thus,

p∗(t) =






0, 0 6 t < t1,

p0(t), t1 6 t < t2,

1, t2 6 t 6 T.

Solving (B.7) and (B.8) for 0 6 t < t1 and solving (B.9) and (B.10) for t2 6 t 6 T , noting the continuity
of F and G and taking the boundary conditions into account, we can similarly obtain

F (t, z, s1, s2) =






A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D1(t)

γ
, 0 6 t < t1,

A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D̃1(t)

γ
, t1 6 t < t2,

A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D̂1(t)

γ
, t2 6 t 6 T,

(B.29)

and

G(t, z, s1, s2) =





A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D2(t)

γ
, 0 6 t < t1,

A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D̃2(t)

γ
, t1 6 t < t2,

A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D̂2(t)

γ
, t2 6 t 6 T,

(B.30)

where

D1(t) =
γaαθ

r

[
er(T−t) − 1

]
+

γ2α2b2

4r

[
e2r(T−t1) − e2r(T−t)

]
+ σ2

1k1(2k1 + 1)

∫ T

t

B1(s)ds

+σ2
2k2(2k2 + 1)

∫ T

t

C1(s)ds−
γaαη

r

[
2− er(T−t1) − er(T−t2)

]
+

a2η2

2b2
(t2 − t1)

+
γaη

r

[
er(T−t2) − 1

]
+

γ2[α2b2 − 2αb2(α− β) + b2(α− β)2]

4r

[
1− e2r(T−t2)

]
,

D̃1(t) =
γaα(θ − η)

r

[
er(T−t) − 1

]
+

a2η2

2b2
(t2 − t) +

γaβη

r

[
er(T−t2) − 1

]

+
γ2[α2b2 − 2αb2(α− β) + b2(α− β)2]

4r

[
1− e2r(T−t2)

]

+σ2
1k1(2k1 + 1)

∫ T

t
B1(s)ds+ σ2

2k2(2k2 + 1)
∫ T

t
C1(s)ds,

D̂1(t) =
γ[aα(θ − 2η) + aη]

r
[er(T−t) − 1] +

γ2[α2b2 − 2αb2(α− β) + b2(α− β)2]

4r

×[1− e2r(T−t)] + σ2
1k1(2k1 + 1)

∫ T

t

B1(s)ds+ σ2
2k2(2k2 + 1)

∫ T

t

C1(s)ds,

(B.31)
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D2(t) =
γaαθ

r

[
er(T−t) − 1

]
+

a2η2

b2
(t2 − t1) +

γaαη

r

[
2− er(T−t1) − er(T−t2)

]

+
γaη

r

[
er(T−t2) − 1

]
+ σ2

1k1(2k1 + 1)

∫ T

t

B2(s)ds+ σ2
2k2(2k2 + 1)

∫ T

t

C2(s)ds,

D̃2(t) =
γaα(θ − η)

r

[
er(T−t) − 1

]
+

a2η2

b2
(t2 − t) +

γa(1− α)η

r

[
er(T−t2) − 1

]

+σ2
1k1(2k1 + 1)

∫ T

t

B2(s)ds+ σ2
2k2(2k2 + 1)

∫ T

t

C2(s)ds,

D̂2(t) =
γ[aα(θ − 2η) + aη]

r

(
er(T−t) − 1

)
+ σ2

1k1(2k1 + 1)

∫ T

t

B2(s)ds

+σ2
2k2(2k2 + 1)

∫ T

t

C2(s)ds

(B.32)

and A1(t), B1(t), C1(t), A2(t), B2(t) and C2(t) are given in (B.23). Putting (B.29) and (B.30) into (B.3)
yields (3.3) and (3.4).

Cases II, VIII: In each of the three cases, t1 < 0 6 t2 < T and therefore,

p∗(t) =

{
p0(t), 0 6 t < t2,

1, t2 6 t 6 T.

Similar to the preceding cases, F and G can be solved explicitly as follows:

F (t, z, s1, s2) =





A1(t)z +

B1(t)
γ

s−2k1
1 + C1(t)

γ
s−2k2
2 + D̃1(t)

γ
, 0 6 t < t2,

A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D̂1(t)

γ
, t2 6 t 6 T,

(B.33)

and

G(t, z, s1, s2) =





A2(t)z +

B2(t)
γ

s−2k1
1 + C2(t)

γ
s−2k2
2 + D̃2(t)

γ
, 0 6 t < t2,

A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D̂2(t)

γ
, t2 6 t 6 T

(B.34)

with A1(t), B1(t), C1(t), A2(t), B2(t), C2(t) and D̃1(t), D̂1(t), D̃2(t), D̂2(t) are given in (B.23), (B.31) and
(B.32). Inserting (B.33) and (B.34) into (B.3), we obtain (3.3) and (3.4).

Cases I, VII, X: In each of the three cases, t1 and t2 satisfy t1 < t2 < 0 < T , and therefore,

p∗(t) = 1, 0 6 t 6 T.

Similarly, we can obtain

F (t, z, s1, s2) = A1(t)z +
B1(t)

γ
s−2k1
1 + C1(t)

γ
s−2k2
2 + D̂1(t)

γ
,

G(t, z, s1, s2) = A2(t)z +
B2(t)

γ
s−2k1
1 + C2(t)

γ
s−2k2
2 + D̂2(t)

γ

(B.35)

with A1(t), B1(t), C1(t), A2(t), B2(t), C2(t), D̂1(t) and D̂2(t) defined in (B.23), (B.31) and (B.32). Using
(B.35) and (B.3), we can derive (3.3) and (3.4).
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