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Abstract We consider approximation algorithms for nonnegative polynomial
optimization problems over unit spheres. These optimization problems have
wide applications e.g., in signal and image processing, high order statistics,
and computer vision. Since these problems are NP-hard, we are interested in
studying on approximation algorithms. In particular, we propose some
polynomial-time approximation algorithms with new approximation bounds. In
addition, based on these approximation algorithms, some efficient algorithms
are presented and numerical results are reported to show the efficiency of our
proposed algorithms.
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1 Introduction

Let R be the real field, and let Rn
+ be the nonnegative orthant in Rn, that is,

the subset of vectors with nonnegative coordinates. A d-th order tensor T is
defined as

T = (ti1i2···id), ti1i2···id ∈ R, 1 6 ij 6 nj , 1 6 j 6 d. (1)

In this regard, a vector is a first-order tensor and a matrix is a second-order
tensor. Tensors of order more than two are called higher-order tensors. In this
paper, we always suppose that d > 2. T is called nonnegative if ti1i2···id > 0.
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When T is nonnegative, we write it as T > 0. For xi ∈ Rni , i = 1, 2, . . . , d, let
T x1x2 · · ·xd be the following multi-linear function defined by tensor T :

T x1x2 · · ·xd =
∑

16ij6nj , 16j6d

ti1i2···idx
1
i1x

2
i2 · · ·x

d
id
. (2)

A d-th order n-dimensional square tensor A is defined as

A = (ai1i2···id), ai1i2···id ∈ R, 1 6 i1, i2, . . . , id 6 n. (3)

Tensor A is called symmetric if its entries ai1i2···id are invariant under any
permutation of their indices {i1, i2, . . . , id} [13]. For x ∈ Rn, let FA be a d-th
degree homogeneous polynomial defined by

FA (x) := A xd =
∑

16i1,i2,...,id6n

ai1i2···idxi1xi2 · · ·xid . (4)

Assume that n,m > 2 are positive integers. A fourth order (n,m)-
dimensional rectangular tensor is defined as

B = (bijkl), bijkl ∈ R, 1 6 i, j 6 n, 1 6 k, l 6 m. (5)

We say that B is a partially symmetric rectangular tensor [11], if

bijkl = bjikl = bijlk = bjilk, 1 6 i, j 6 n, 1 6 k, l 6 m.

Let

GB(x, y) := Bxxyy =
n∑

i,j=1

m∑
k,l=1

bijklxixjykyl, x ∈ Rn, y ∈ Rm. (6)

In this paper, we consider the following two models:

(P1) max FA (x)

s.t. ‖x‖ = 1, x ∈ Rn;

(P2) max GB(x, y)

s.t. ‖x‖ = 1, ‖y‖ = 1, x ∈ Rn, y ∈ Rm.

(P1) and (P2) are both homogeneous polynomial optimization problems and
they have wide applications in signal processing, biomedical engineering, and
investment science; see [2,3,9,14,17,18,20–22]. Since polynomial functions are
non-convex in most cases, (P1) and (P2) are NP-hard problems, see [2,11,22].
Hence, they are difficult to solve theoretically as well as numerically. Motivated
by this, in this paper, we will focus on approximation algorithms for (P1) and
(P2). A quality measure of approximation is defined as follows.
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Definition 1.1 [11] Let the optimization problem

max g(x)

s.t. x ∈ ω ⊂ Rn (7)

be NP-hard and Algorithm M be a polynomial time approximation algorithm
to solve (7). Algorithm M is said to have a relative approximation bound
C ∈ (0, 1] if for any instance of (7), Algorithm M can find a lower bound g for
(7) such that {

Cgmax 6 g 6 gmax, gmax > 0,

g 6 gmax 6 Cg, gmax < 0,

where gmax is the optimal value of (7). Furthermore, Algorithm M is called a
C-bound approximation algorithm.

When Algorithm M returns a feasible solution x with objective value g =
g(x) such that {

Cgmax 6 g 6 gmax, gmax > 0,

g 6 gmax 6 Cg, gmax < 0,

the feasible solution x is said to be a C-bound approximation solution of the
maximization model (7).

Clearly, in this definition, the closer C is to 1, the better the approximation
algorithm would be.

Recently, a number of approximation algorithms for (P1) and (P2) have
been proposed; see [2,3,9,11,15,18,19,23]. In the second column of Table 1, we
summarize some approximation bounds for (P1) and (P2) obtained in [2,11,15,
19,23]. In [12], using the Sum-of-Squares (SOS) approach proposed by Lasserre
[9], approximate solutions of (P1) were considered. In [5,6], some specially
structured polynomial optimization problem with suitable sign structure has
been studied via the SOS approach. The SOS approach gives tight bounds for
general polynomial optimization, but it is expensive for large scale problems.

In this paper, we study (P1) and (P2), where A and B are nonnegative.
When A > 0 and B > 0, (P1) and (P2) are nonnegative polynomial
optimization problems over unit spheres. In Section 2, we present some
approximation algorithms for (P1) and (P2) with some improved quality
bounds. Table 1 summarizes the approximation bounds obtained in this paper.
Clearly, when d > 4, our approximation bounds are new and better than the
existing ones. In Section 3, some efficient algorithms for (P1) and (P2) are
proposed, and numerical results are reported.

Some words about notation. For a vector x = [x1, x2, . . . , xn]T ∈ Rn, the 2-
norm is denoted by ‖x‖ and we use |x| to denote the vector [|x1|, |x2|, . . . , |xn|]T.
We use e to denote the vector of ones and ei to denote the vector with its ith
entry being 1 and other entries being 0. For a d-th order n-dimensional square
tensor A , and x ∈ Rn, let A xd−1 be an n-dimensional vector defined by
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Table 1 New approximation bounds for (P1) and (P2)

problem existing quality bounds new quality bounds

(P1) d!d−dn−(d−2)/2 [2]

Ω
( (logn)(d−2)/2

n(d−2)/2

)
[15] d!d−dn− d−2

4 (A > 0, d > 4 even)

n−(d−2)/2 (A > 0) [23] d!d−dn−(d−1)/4 (A > 0, d > 5 odd)

(P2)
1

2 max{n,m}2 [11]
1√

min{n,m}
(B > 0)

Ω
( log min{n,m}

min{n,m}

)
[15]

1√
min{n,m}

(B > 0)

1

2 max{n,m}(max{n,m} − 1)
[19]

1√
min{n,m}

(B > 0)

1√
nm

(B > 0) [23]
1√

min{n,m}
(B > 0)

A xd−1 =

( ∑
16i2,i3,...,id6n

aii2i3···idxi2xi3 · · ·xid
)

16i6n
. (8)

For a fourth order (n,m)-dimensional partially symmetric rectangular tensor
B, x ∈ Rn, and y ∈ Rm, let Bxyy be an n-dimensional vector defined by

Bxyy =

( n∑
j=1

m∑
k,l=1

bijklxjykyl

)
16i6n

, (9)

and let Bxxy be an m-dimensional vector defined by

Bxxy =

( n∑
i,j=1

m∑
l=1

bijklxixjyl

)
16k6m

. (10)

2 Approximation solutions for (P1) and (P2)

In this section, we will present some new approximation bounds for (P1) and
(P2). We first give some lemmas which will be used later.

For a symmetric matrix M, let σ(M) denote the spectrum of M, the set
of all eigenvalues of M. The spectral radius of M, denoted by ρ(M), is the
maximum distance of an eigenvalue from the origin, i.e.,

ρ(M) = max{|λ| : λ ∈ σ(M)}.

Throughout this paper, it is assumed that the eigenvectors of a matrix are unit
vectors.
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Lemma 2.1 For an n× n nonnegative matrix M, there holds that

ρ(M) 6 max
i

n∑
j=1

Mij .

This lemma is an immediate corollary of the Gershgorin Circle Theorem, so
the proof is omitted here.

Lemma 2.2 Suppose that the n×n matrix M is nonnegative and symmetric.
Then, for any unit vectors x ∈ Rn and y ∈ Rn, there exists a unit vector u ∈ Rn

such that
xTMy 6 uTMu.

Proof Since M is an n × n symmetric nonnegative matrix, by [1, Theorem
4.1], we have

max{xTMy : ‖x‖ = ‖y‖ = 1} = max{xTMx : ‖x‖ = 1}.

Let u be a nonnegative eigenvector of M associated with the spectral radius of
M, ρ(M). Then, u is a global optimal solution of the problem

max{xTMx : ‖x‖ = 1}.

Therefore, for any unit vectors x ∈ Rn and y ∈ Rn, xTMy 6 uTMu. �

Lemma 2.3 (P1) and (P2) have nonnegative global optimal solutions.

Proof Since unit spheres are closed and bounded, (P1) and (P2) have global
optimal solutions. Suppose that x∗ ∈ Rn is a global optimal solution of (P1),
and let

|x∗| = [|x∗1, |x∗2|, . . . , |x∗n|]T.

Then we have ‖x∗‖ = 1 and

FA (x∗) > FA (x), ∀x ∈ Rn, ‖x‖ = 1.

Because the 2-norm of |x∗| is 1, we have

FA (|x∗|) 6 FA (x∗).

Since A is a nonnegative tensor, we obtain

FA (|x∗|) > FA (x∗).

Hence,
FA (|x∗|) = FA (x∗),

which implies that |x∗| is a global optimal solution of (P1). Similarly, we can
show that (P2) has a nonnegative global optimal solution. �
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Now, we present the following approximation algorithm for (P2). Suppose
that n 6 m in (P2) and the fourth order (n,m)-dimensional partial symmetric
tensor B is nonnegative.

Algorithm 2.1 Step 0 Input a nonnegative fourth order (n,m)-dimensional
tensor B = (bijkl).

Step 1 Compute Mi = (
∑n

j=1 bijkl)16k,l6m, i = 1, 2, . . . , n. Then, for i =
1, 2, . . . , n, compute the largest eigenvalue λ∗i and the associated nonnegative
eigenvector yi∗.

Step 2 Let λ∗j = max{λ∗i , 1 6 i 6 n}, y = yj∗, and M = By2. Then, compute
the largest eigenvalue λ∗ of M and the associated nonnegative eigenvector x.
Output (x, y).

Since we can find the largest eigenvalue and the associated eigenvector
for symmetric nonnegative matrices in polynomial time, Algorithm 2.1 is a
polynomial-time approximation algorithm for (P2).

Theorem 2.1 Let

Gmax := max GB(x, y)

s.t. ‖x‖ = 1, ‖y‖ = 1, x ∈ Rn, y ∈ Rm.

Then, Algorithm 2.1 produces a (min{n,m})−1/2-bound approximation solution
for (P2).

Proof By Lemma 2.3, (P2) has a nonnegative global optimal solution pair.
For any y ∈ Rm, let By2 be a matrix defined with its elements

(By2)ij =
m∑

k,l=1

bijklykyl, 1 6 i, j 6 n.

Then, by the fact that an optimal solution pair of problem (P2) can be non-
negative, we have

Gmax = max
‖x‖=‖y‖=1, x∈Rn

+, y∈Rm
+

GB(x, y)

= max
‖y‖=1, y∈Rm

+

max
‖x‖=1, x∈Rn

+

xT(By2)x

6 max
‖y‖=1, y∈Rm

+

ρ(By2)

6 max
‖y‖=1, y∈Rm

+

max
i

∑
16j6n, 16k,l6m

bijklykyl (by Lemma 2.1)

= max
‖y‖=1, y∈Rm

+

max
i
yT(Mi)y

6 max
‖y‖=1, y∈Rm

+

max
i
ρ(Mi)

= max
i
ρ(Mi).
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Without loss of generality, let ρ(M1) = maxi ρ(Mi), and

ρ(M1) = yTM1y =
∑

16j6n, 16k,l6m

b1jklykyl

for some y ∈ Rm
+ . We have

ρ(M1) = eT
1 (By2)e =

√
n eT

1 (By2)
e√
n
.

Since By2 is a symmetric matrix, by Lemma 2.2, we have

ρ(M1) =
√
n eT

1 (By2)
e√
n
6
√
nxT(By2)x =

√
nGB(x, y) 6

√
nGmax,

where x is a nonnegative eigenvector of By2 associated with the spectral radius
of By2. Hence,

Gmax 6 ρ(M1) 6
√
nGB(x, y) 6

√
nGmax.

Therefore,
1√
n
Gmax 6 GB(x, y) 6 Gmax.

This implies that (x, y) is an n−1/2-bound approximation solution of (P2). �

Lemma 2.4 Suppose that A in problem (P1) is a nonnegative d-th order n-
dimensional symmetric tensor. For any nonnegative unit vectors x(i) ∈ Rn, i =
1, 2, . . . , d, we can find a nonnegative unit vector x ∈ Rn such that

d!d−dA x(1)x(2) · · ·x(d) 6 A xd = FA (x).

Proof Let

y =

∑d
i=1 ξ

∗
i x

(i)

‖
∑d

i=1 ξ
∗
i x

(i)‖

= arg max

{
A

( ∑d
i=1 ξix

(i)

‖
∑d

i=1 ξix
(i)‖

)d

: ξi ∈ {−1, 1}, i = 1, 2, . . . , n

}
. (11)

By [2, Lemma 1], we have

d!d−dA x(1)x(2) · · ·x(d) 6 A yd.

Let x = |y|. Then we obtain

d!d−dA x(1)x(2) · · ·x(d) 6 A yd 6 A xd. �
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Let A be a nonnegative fourth order n-dimensional symmetric tensor, and
consider the following three optimization problems:

max A x4

s.t. xTx = 1, x ∈ Rn; (12)

max A x2y2

s.t. xTx = 1, yTy = 1, x ∈ Rn, y ∈ Rn; (13)

max A xyzw

s.t. xTx = 1, yTy = 1, zTz = 1, wTw = 1, x, y, z, w ∈ Rn. (14)

Lemma 2.5 Problems (12)–(14) have the same optimal values.

Proof By [20, Theorem 2.1] or [1, Theorem 4.1], the result holds. �

Next, we give an approximation algorithm for (P1) with d = 4.

Algorithm 2.2 Step 0 Input a nonnegative fourth order n-dimensional
symmetric tensor A .

Step 1 Compute an approximation solution (u, v) of (13) by Algorithm 2.1.

Step 2 Compute a nonnegative unit vector x ∈ Rn such that 4! 4−4A u2v2 6
A x4, and output x.

By Theorem 2.1, Lemmas 2.4 and 2.5, the following result holds.

Theorem 2.2 Algorithm 2.2 produces a 4! 4−4n−1/2-bound approximation
solution for (P1) with d = 4.

Proof Let gmax be the optimal value of problem (12). By Lemma 2.5, gmax

is also the optimal value of its bi-quadratic relaxation problem (13). It follows
from Theorem 2.1 that we can find nonnegative unit vectors u, v ∈ Rn such
that

gmax 6
√
nA u2v2.

By Lemma 2.4, we can find a nonnegative unit vector x ∈ Rn in constant time
such that

4! 4−4A u2v2 6 A x4.

Hence,

gmax 6
√
nA u2v2 6

√
n

4! 4−4
A x4.

Therefore,
4! 4−4

√
n

gmax 6 A x4 6 gmax.

This means that x is a 4! 4−4n−1/2-bound approximation solution of problem
(12). �
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To extend Theorem 2.2 to the general case of (P1), we need the results of
(P1) with d = 3 which are stated as follows.

Theorem 2.3 [23] Suppose that A in problem (P1) is a nonnegative third
order n-dimensional symmetric tensor. Then, there exists an n−1/2-bound
approximation algorithm for (P1).

Theorem 2.4 [2,22] Suppose that A in problem (P1) is a third order n-
dimensional symmetric nonnegative tensor. Then there exists a 3! 3−3n−1/2-
bound approximation solution for (P1).

In addition, by [22, Theorem 5.1], a 3! 3−3n−1/2-bound approximation
solution for (P1) with d = 3 can be obtained by the following approximation
algorithm.

Algorithm 2.3 Step 0 Input a nonnegative third order n-dimensional
symmetric tensor A = (aijk).

Step 1 Compute Mi = (aijk)16j,k6n, i = 1, 2, . . . , n. Then, for i = 1, 2, . . . , n,
compute the largest eigenvalue λi of Mi and the associated nonnegative
eigenvector yi. Let λi∗ = max{λi, 1 6 i 6 n} and yi

∗
be the nonnegative

eigenvector associated with λi∗ .

Step 2 Find a nonnegative unit vector x ∈ Rn such that 3! 3−3A ei∗(yi∗)
2
6

A x3, and output x.

Now, we are ready to present our main result.

Theorem 2.5 Suppose that A is a nonnegative symmetric tensor and d > 3.
Then, when d is even, there exists an n−(d−2)/4-bound approximation algo-
rithm for (P1); when d is odd, there exists an n−(d−1)/4-bound approximation
algorithm for (P1). Furthermore, when d is even, there exists a d!d−dn−(d−2)/4-
bound approximation solution for (P1); when d is odd, there exists a d!d−d

·n−(d−1)/4-bound approximation solution for (P1).

Proof Let fmax(A ) be the optimal value of (P1). We first prove the desired
result by induction when d > 4 and d = 2k is even.

For case of k = 2, the result holds by Theorem 2.1. That is, we can find
nonnegative unit vectors x1, x2 ∈ Rn in polynomial time such that

fmax(A ) 6
√
nA (x1)2(x2)2.

Assume that our result holds for k − 1 (k > 2). That is, d = 2(k − 1) and
nonnegative unit vectors x1, x2, . . . , xk−1 ∈ Rn can be found in polynomial time
such that

fmax(A ) 6 n(d−2)/4A (x1)2(x2)2 · · · (xk−1)2.

Now, we show that the result holds for k. For this case, d = 2k. Similar to
Lemma 2.5, we have the equivalence between problem (P1) and the following
multi-homogeneous optimization problem:

max A x2yd−2

s.t. xTx = 1, yTy = 1.
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Based on this equivalence and Lemma 2.1, we obtain that

fmax(A ) = max
yTy=1

max
xTx=1

A x2y2k−2

= max
yTy=1

ρ(A y2k−2)

6 max
yTy=1

max
i

n∑
j=1

(A y2k−2)ij

= max
yTy=1

max
i

(A y2k−2e)i

= max
16i6n

max
yTy=1

(A y2k−2e)i

=
√
n max

16i6n
max
yTy=1

(
A y2k−2 e√

n

)
i

=
√
n max

16i6n

{
max
yTy=1

A
e√
n
eiy

2k−2
}
.

For i = 1, 2, . . . , n, Gi := A e√
n
ei is a (2k−2)-nd order n-dimensional symmetric

nonnegative tensor. Then there holds

fmax(A ) 6
√
n max

16i6n

{
max
yTy=1

Giy
2k−2

}
.

For i = 1, 2, . . . , n, by our assumption, we can find nonnegative unit vectors
y(i,1), y(i,2), . . . , y(i,k−1) ∈ Rn in polynomial time such that

fmax(Gi) = max
yTy=1

Giy
2k−2 6 n(k−2)/2Gi(y

(i,1))2(y(i,2))2 · · · (y(i,k−1))2.

Hence, we obtain that

fmax(A ) 6
√
n max

16i6n
{n(k−2)/2Gi(y

(i,1))2(y(i,2))2 · · · (y(i,k−1))2}

= n(k−1)/2 max
16i6n

{Gi(y
(i,1))2(y(i,2))2 · · · (y(i,k−1))2}

= n(k−1)/2 max
16i6n

{
A

e√
n
ei(y

(i,1))2(y(i,2))2 · · · (y(i,k−1))2
}
.

Suppose that i0 is the index such that

A
e√
n
ei0(y(i0,1))2(y(i0,2))2 · · · (y(i0,k−1))2

= max
16i6n

{
A

e√
n
ei(y

(i,1))2(y(i,2))2 · · · (y(i,k−1))2
}
.

Then there holds

fmax(A ) 6 n(k−1)/2A
e√
n
ei0(y(i0,1))2(y(i0,2))2 · · · (y(i0,k−1))2

= n(d−2)/4A
e√
n
ei0(y(i0,1))2(y(i0,2))2 · · · (y(i0,k−1))2.
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Hence, we have proven that there exists an n−(d−2)/4-bound when d > 4 and d
is even by induction. Furthermore, by Lemma 2.4, we can find a nonnegative
unit vector x ∈ Rn in constant time such that

d!d−dA
e√
n
ei0(y(i0,1))2(y(i0,2))2 · · · (y(i0,k−1))2 6 A xd.

So, we have

fmax(A ) 6 n(d−2)/4A
e√
n
ei0(y(i0,1))2(y(i0,2))2 · · · (y(i0,k−1))2 6

n(d−2)/4

d!d−d
A xd.

Therefore,
d!d−dn−(d−2)/4fmax(A ) 6 A xd 6 fmax(A ).

This means that x is a d!d−dn−(d−2)/4-bound approximation solution of (P1).
Similarly, we can prove that there exists a d!d−dn−(d−1)/4-bound

approximation solution for (P1) when d > 3 and d is odd. �

From the proof of Theorem 2.5, we present a polynomial-time approximation
algorithm for (P1) when d > 3 as follows.

Algorithm 2.4 Step 0 Input a nonnegative d-th order n-dimensional
symmetric tensor A . Here, d > 3. If d = 2k + 2, k > 2, then go to Step 1.
If d = 2k + 1, k > 1, then go to Step 3.

Step 1 Compute the matrices A (e/
√
n )kei1ei2 · · · eik , 1 6 i1, i2, . . . , ik 6 n.

For each matrix A (e/
√
n )kei1ei2 · · · eik , compute the largest eigenvalue

λ(i1,i2,...,ik) and the associated nonnegative eigenvector y(i1,i2,...,ik). Let

λ(i∗1,i
∗
2,...,i

∗
k) = max{λ(i1,i2,...,ik) : 1 6 i1, i2, . . . , ik 6 n}, (15)

and let y(i∗1,i
∗
2,...,i

∗
k) be the nonnegative eigenvector associated with λ(i∗1,i

∗
2,...,i

∗
k).

Step 2 Compute a nonnegative unit vector x ∈ Rn such that

d!d−dA
( e√

n

)k
ei∗1ei∗2 · · · ei∗k(y(i∗1,i

∗
2,...,i

∗
k))2 6 A xd.

Output x, and stop.

Step 3 Compute the matrices A (e/
√
n )k−1ei1ei2 · · · eik , 1 6 i1, i2, . . . , ik 6

n. For each matrix A (e/
√
n )k−1ei1ei2 · · · eik , compute the largest eigenvalue

λ(i1,i2,...,ik) and the associated nonnegative eigenvector y(i1,i2,...,ik). Let λ(i∗1,i
∗
2,...,i

∗
k)

be defined as in (15), and let y(i∗1,i
∗
2,...,i

∗
k) be the nonnegative eigenvector

associated with λ(i∗1,i
∗
2,...,i

∗
k).

Step 4 Compute a nonnegative unit vector x ∈ Rn such that

d!d−dA
( e√

n

)k−1
ei∗1ei∗2 · · · ei∗k(y(i∗1,i

∗
2,...,i

∗
k))2 6 A xd.

Output x, and stop.
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Clearly, when d = 3, Algorithm 2.4 reduces to Algorithm 2.3; when d = 4,
Algorithm 2.4 becomes to Algorithm 2.2.

3 Efficient algorithms for (P1) and (P2)

In this section, we present some efficient methods for solving (P1) and (P2),
based on the approximation algorithms proposed in Section 2 and some local
search procedures for (P1) and (P2) [8,16]. Usually, the solutions obtained by
the approximation algorithms in Section 2 may be not local optimal solutions
for (P1) and (P2). Starting from these solutions, by the local search procedures
for (P1) and (P2) [8,16], we can obtain some further improved solutions for (P1)
and (P2); see Tables 2 and 3.

Table 2 Numerical comparison of Algorithms 2.4 and 3.1

n instance Algorithm 2.4, Value 1 Algorithm 3.1, Value 2

9 1 0.0684 0.0689

2 0.3255 0.3255
3 0.4045 0.4045
4 0.0353 0.0366
5 0.0647 0.0652
6 0.2999 0.3000
7 0.0750 0.0755
8 0.0655 0.0661
9 1.3449 1.3449

10 0.4587 0.4588

12 1 0.0445 0.0454
2 0.1789 0.1790
3 0.0848 0.0852
4 0.4533 0.4533
5 0.0472 0.0480
6 0.2581 0.2582
7 0.4031 0.4032
8 0.5213 0.5213
9 0.0527 0.0535

10 0.4419 0.4419

Now, we propose an algorithm for (P1) as follows.

Algorithm 3.1 Initial Step Input a nonnegative symmetric tensor A and
c > 0. By Algorithm 2.4, obtain an initial point x(0) ∈ Rn

+. Let f0 = A [x(0)]d

and k := 0.

Iterative Step for k = 1, 2, . . . do

x(k) =
A [x(k−1)](d−1) + cx(k−1)

‖A [x(k−1)](d−1) + cx(k−1)‖
, fk = A [x(k)]d.

end for
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Table 3 Numerical comparison of Algorithms 2.1 and 3.2

(n,m) instance Algorithm 2.1, Value 3 Algorithm 3.2, Value 4

(6, 9) 1 0.3709 0.3710

2 0.2246 0.2247
3 0.0011 0.0013
4 0.9864 0.9864
5 0.1359 0.1362
6 0.0210 0.0232
7 0.0322 0.0336
8 0.3765 0.3765
9 0.0500 0.0508

10 0.2502 0.2502

(6, 12) 1 0.0001 0.0102
2 0.1926 0.1927
3 0.0003 0.0142
4 0.0765 0.0771
5 0.1426 0.1428
6 0.0511 0.0519
7 0.1307 0.1309
8 0.0451 0.0461
9 0.0115 0.0154

10 0.2532 0.2533

Algorithm 3.1 includes two parts: the initial step and the iterative step.
It is easy to see that the initial step returns an approximation solution with
a bound defined in Theorem 2.5. The iterative step is the SS-HOPM [8], so
according to [8, Theorem 4.4], we have the following convergence result.

Theorem 3.1 Suppose that {x(k)} is an infinite sequence generated by
Algorithm 3.1. If c > β(A ), where

β(A ) = (d− 1) max
x∈Σ

ρ(A xd−2), Σ = {x ∈ Rn : ‖x‖ = 1},

then {x(k)} converges to a KKT point of (P1).

For Algorithm 3.1, in practice, we may stop the iteration when |fk−fk−1| 6
10−5. For (P2), we state an algorithm in the following.

Algorithm 3.2 Initial Step Input a nonnegative fourth order (n,m)-
dimensional partial symmetric tensor B and C1, C2 > 0. By Algorithm 2.1,
obtain an initial point (x(0), y(0)) ∈ Rn

+ × Rm
+ . Let g0 = Bx(0)x(0)y(0)y(0) and

k := 0.

Iterative Step for k = 1, 2, . . . do

x(k) =
Bx(k−1)y(k−1)y(k−1) + C1x

(k−1)

‖Bx(k−1)y(k−1)y(k−1) + C1x(k−1)‖
,

y(k) =
Bx(k)x(k)y(k−1) + C2y

(k−1)

‖Bx(k)x(k)y(k−1) + C2y(k−1)‖
,
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gk = Bx(k)x(k)y(k)y(k).

end for

Similar as Algorithm 3.1, Algorithm 3.2 also includes two parts: the initial
step and the iterative step. The initial step returns an approximation
solution with a bound defined in Theorem 2.1. The iterative step is
[16, Algorithm 5.1]. For Algorithm 3.2, in practice, we may stop the
iteration when |gk − gk−1| 6 10−5. By [16, Theorem 5.1], we have the following
convergence result for Algorithm 3.2.

Theorem 3.2 Suppose that {x(k), y(k)} is an infinite sequence generated by
Algorithm 3.2. If

C1, C2 > τ := max{|Bx2y2| : ‖x‖ = ‖y‖ = 1},

then any accumulation point of the sequence is a KKT point of (P2).

In the following, we will first compare Algorithms 3.1 and 3.2 with the
approximation algorithms in Section 2. Then we are going to compare our
algorithms proposed in this section with two competing methods. One of
them is the SOS method [9,10], based on which, Henrion et al. [4] developed a
specialized Matlab toolbox known as GloptiPoly3, and the other one is the
ADM method [7]. GloptiPoly3 is designed for general polynomial optimization
problems and it can produce global minimizers and global maximizers. The
ADM method [7] is a local search algorithm for general polynomial optimization
problems and theoretically it can produce local minimizers and local
maximizers. The main purpose of comparing Algorithms 3.1 and 3.2 with
GloptiPoly3 is to show that Algorithms 3.1 and 3.2 may produce global
solutions for large scale problems. All algorithms are implemented in
MATLAB (R2010b) and all the numerical computations are conducted using
an Intel 3.30 GHz computer with 8 GB of RAM. All test problems are randomly
generated.

In Tables 2 and 3, we report the performance comparison of Algorithms 3.1
and 3.2 with the approximation algorithms in Section 2. In Table 2, we report
our numerical results of Algorithms 2.4 and 3.1 for some randomly generated
tensor A with d = 4. Value 1 and Value 2 denote the values of FA (x) at the
final iteration of Algorithms 2.4 and 3.1, respectively. In Table 3, Value 3 and
Value 4 denote the values of GB(x, y) at the final iteration of Algorithms 2.1
and 3.2, respectively. From these two tables, clearly, we can see Algorithms 3.1
and 3.2 can produce solutions with bigger objective function values than the
approximation algorithms in Section 2.

Now, we report our numerical results of Algorithm 3.1, the ADM method
[7], and GloptiPoly3 [4] for solving (P1). We tested these algorithms for some
randomly generated tensor A with d = 4. Our numerical results are reported
in Tables 4 and 5. In these tables, for Algorithm 3.1, ‘value’ denotes the value
of FA (x) at the final iteration, and ‘time’ denotes the total computer time in
seconds used to solve the problem. For the ADM method, ‘best value’ denotes
the best solution value among the ones generated by 5 different starting points,
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Table 4 Numerical results of Algorithm 3.1, ADM [7], and GloptiPoly3 [4]
for small size problems

n instance Algorithm 3.1 ADM GloptiPoly3

value time best value aver. time value time

6 1 17.9380 0.0192 17.9380 0.0403 17.9380 0.5821

2 18.1761 0.0070 18.1761 0.0264 18.1761 0.0959
3 18.0296 0.0038 18.0296 0.0267 18.0296 0.0878
4 17.8157 0.0048 17.8157 0.0266 17.8157 0.1172
5 17.7139 0.0037 17.7139 0.0268 17.7139 0.0992
6 17.8932 0.0047 17.8932 0.0267 17.8932 0.1001
7 18.0886 0.0036 18.0886 0.0268 18.0886 0.1015
8 18.0627 0.0049 18.0627 0.0265 18.0627 0.1006
9 17.9229 0.0047 17.9229 0.0265 17.9229 0.0874

10 17.8302 0.0048 17.8302 0.0268 17.8302 0.0991

9 1 40.1582 0.0118 40.1582 0.0269 40.1582 0.8595
2 40.2443 0.0120 40.2443 0.0270 40.2443 0.8655
3 40.3084 0.0119 40.3084 0.0271 40.3084 0.8513
4 40.3257 0.0132 40.3257 0.0271 40.3257 0.8642
5 39.7725 0.0119 39.7725 0.0270 39.7725 0.7725
6 40.7858 0.0118 40.7858 0.0313 40.7858 0.7262
7 40.4937 0.0118 40.4937 0.0269 40.4937 0.7612
8 40.6219 0.0118 40.6219 0.0316 40.6219 0.6264
9 40.2984 0.0119 40.2984 0.0273 40.2984 0.7618

10 40.4987 0.0118 40.4987 0.0228 40.4987 0.6870

12 1 72.0432 0.0287 72.0432 0.0276 72.0432 6.5892
2 72.4487 0.0289 72.4487 0.0232 72.4487 6.3997
3 72.1980 0.0284 72.1980 0.0230 72.1980 6.4412
4 71.8164 0.0387 71.8164 0.0339 71.8164 6.5011
5 71.8175 0.0286 71.8175 0.0232 71.8175 7.4755
6 72.2376 0.0408 72.2376 0.0339 72.2376 6.4816
7 71.8316 0.0283 71.8316 0.0277 71.8316 7.5805
8 72.2826 0.0281 72.2826 0.0283 72.2826 6.5865
9 72.0180 0.0285 72.0180 0.0277 72.0180 7.5763

10 71.8804 0.0281 71.8804 0.0234 71.8804 6.4136

15 1 112.7589 0.0578 112.7589 0.0290 112.7589 72.0025
2 112.7157 0.0604 112.7157 0.0249 112.7157 71.9587
3 112.5376 0.0579 112.5376 0.0247 112.5376 71.6209
4 112.6509 0.0766 112.6509 0.0319 112.6509 71.6807
5 112.1491 0.0568 112.1491 0.0244 112.1491 72.3085
6 112.9461 0.0679 112.9461 0.0245 112.9461 71.8191
7 112.4412 0.0794 112.4412 0.0289 112.4412 72.0612
8 112.2322 0.0801 112.2322 0.0269 112.2322 73.6233
9 112.1184 0.0677 112.1184 0.0291 112.1184 71.8953

10 112.4726 0.0787 112.4726 0.0269 112.4726 71.9910

and ‘aver. time’ denotes the average computer time in seconds used to solve the
problem. For GloptiPoly3 [4], ‘value’ denotes the value of FA (x) at the final
iteration, ‘time’ denotes the total computer time in seconds used to solve the
problem, and for GloptiPoly3, all the global solutions are found. From Table 4,
we can see that these three algorithms can solve all the test problems with same
optimal values. In terms of the computer time, we can see that GloptiPoly3
is most time consuming as it involves additional moment matrix rank condition
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Table 5 Numerical results of Algorithm 3.1 and ADM [7] for large size problems

n instance Algorithm 3.1 ADM

value time best value aver. time

40 1 799.2684 0.1259 799.2684 0.2440

2 799.7059 0.0590 799.7059 0.2430
3 800.1427 0.0588 800.1427 0.2926
4 800.2174 0.0587 800.2174 0.2423
5 799.6355 0.0585 799.6355 0.2428
6 799.9708 0.0579 799.9708 0.2440
7 799.8903 0.0588 799.8903 0.2424
8 799.8400 0.0576 799.8400 0.2912
9 800.5227 0.0580 800.5227 0.2921

10 800.0133 0.0583 800.0133 0.2903

60 1 1799.7780 0.2597 1799.7780 1.3086
2 1799.9830 0.2591 1799.9830 1.3140
3 1800.1720 0.2603 1800.1720 1.0960
4 1799.7120 0.2625 1799.7120 1.3206
5 1799.7816 0.2608 1799.7816 1.1023
6 1800.2263 0.2611 1800.2263 1.3252
7 1800.2267 0.2611 1800.2267 1.3221
8 1800.1004 0.2628 1800.1004 1.3224
9 1800.3416 0.2611 1800.3416 1.1045

10 1799.7447 0.2618 1799.7447 1.1048

80 1 3199.7798 1.6405 3199.7798 4.9238
2 3199.9943 1.6386 3199.9943 4.9683
3 3200.4058 1.6463 3200.4058 4.9511
4 3200.0421 1.6422 3200.0421 4.9599
5 3200.0610 1.6439 3200.0610 5.9472
6 3199.8731 1.6448 3199.8731 4.9741
7 3200.2557 1.6484 3200.2557 4.9761
8 3199.5153 1.6472 3199.5153 4.9966
9 3200.3246 1.6449 3200.3246 4.9830

10 3200.1149 1.6480 3200.1149 4.9834

100 1 4999.6408 2.0561 4999.6408 10.4039
2 4999.7645 2.0431 4999.7645 8.7602
3 4999.6792 2.0447 4999.6792 10.5746
4 5000.1390 2.0577 5000.1390 8.7747
5 4999.8006 2.0579 4999.8006 8.8198
6 5000.4760 2.0637 5000.4760 10.6242
7 5000.0296 2.0612 5000.0296 8.8647
8 4999.9768 2.0789 4999.9768 8.8659
9 5000.0183 2.0620 5000.0183 8.8939

10 5000.0126 2.0682 5000.0126 10.6267

check for extracting global maximizers while Algorithm 3.1 and the ADM
method need less computer time. Table 5 shows that Algorithm 3.1 and the
ADM method perform well for these large size test problems.

In addition, we tested Algorithm 3.2 and GloptiPoly3 [4] for some randomly
generated tensor B. Our numerical results reported in Table 6, where ‘value’
denotes the value of GB(x, y) at the final iteration, and ‘time’ denotes the total
computer time in seconds used to solve the problem. These results show that
Algorithm 3.2 can produce global solutions for these test problems.
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Table 6 Numerical results of Algorithm 3.2 and GloptiPoly3 [4]
for small size problems

(n,m) instance Algorithm 3.2 GloptiPoly3

value time value time

(3, 6) 1 3.8066 0.5600 3.8066 4.1583

2 1.3513 0.0070 1.3513 0.9007
3 0.0739 0.0070 0.0739 1.1097
4 4.1287 0.0073 4.1287 0.6044
5 2.2616 0.0070 2.2616 0.6213
6 2.1449 0.0068 2.1449 0.7088
7 1.0516 0.0072 1.0516 0.7839
8 1.5155 0.0071 1.5155 0.8563
9 2.2108 0.0063 2.2108 0.6108

10 2.3806 0.0066 2.3806 0.6888

(3, 9) 1 3.6203 0.0075 3.6203 8.4651
2 4.9392 0.0073 4.9392 6.4375
3 4.6096 0.0065 4.6096 8.5439
4 1.9927 0.0071 1.9927 8.4526
5 2.7925 0.0073 2.7925 6.3307
6 3.8466 0.0069 3.8466 7.3962
7 5.8244 0.0103 5.8244 7.4653
8 3.3822 0.0064 3.3822 6.3533
9 0.4579 0.0069 0.4579 10.4191

10 2.3821 0.0071 2.3821 7.3675

(6, 9) 1 7.6415 0.0702 7.6415 72.7478
2 2.8294 0.0067 2.8294 71.8820
3 2.1927 0.0064 2.1927 65.3537
4 5.0578 0.0063 5.0578 72.5861
5 11.4202 0.0164 11.4202 73.2697
6 14.9455 0.0066 14.9455 83.5311
7 3.3829 0.0063 3.3829 63.3064
8 12.1780 0.0064 12.1780 71.9839
9 4.1406 0.0064 4.1406 76.4998

10 2.5000 0.0113 2.5000 76.2772

(6, 12) 1 8.1447 0.1898 8.1447 465.3645
2 8.6276 0.0068 8.6276 524.4079
3 12.8403 0.0064 12.8403 523.8832
4 5.6678 0.0070 5.6678 458.4797
5 5.5411 0.0172 5.5411 461.5319
6 9.0097 0.0064 9.0097 460.4975
7 7.4475 0.0080 7.4475 527.9661
8 6.8387 0.0067 6.8387 526.6338
9 14.2982 0.0088 14.2982 525.0086

10 10.1592 0.0067 10.1592 525.4176
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