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THE CUBIC SPHERICAL OPTIMIZATION PROBLEMS

XINZHEN ZHANG, LIQUN QI, AND YINYU YE

Abstract. In this paper, the cubic spherical optimization problems, including
the cubic one-spherical/two-spherical/three-spherical optimization problems,
are discussed. We first show that the two-spherical optimization problem is

a special case of the three-spherical optimization problem. Then we show
that the one-spherical optimization problem and the two-spherical optimiza-
tion problem have the same optimal value when the tensor is symmetric. In
addition, NP-hardness of them are established. For the cubic three-spherical
optimization problem, we discuss the conditions under which the problem is
polynomial time solvable and if the polynomial time approximation scheme
(PTAS) exists. Then we present a relative quality bound by finding the largest
singular values of matrices. Finally, a practical method for solving the cubic
three-spherical optimization problem is proposed and preliminary numerical
results are reported.

1. Introduction

The cubic one-spherical optimization problem has the following form:

(1.1)
min
x∈�n

f(x) := Ax3 =
n∑

i,j,k=1

aijkxixjxk

s.t. ‖x‖ = 1,

where n ≥ 2 and A is a third order (n× n× n)-dimensional real symmetric tensor.
Here, tensor A is symmetric in the sense that its element aijk is invariant under any
permutation of their indices (i, j, k). In some earlier literature [5, 7, 12], symmetric
tensor is also called being supersymmetric.

The cubic two-spherical optimization problem has the following form:

(1.2)
min

x∈�n,z∈�q
g(x) := Bx2z =

n∑
i,j=1

q∑
k=1

bijkxixjzk

s.t. ‖x‖ = 1, ‖z‖ = 1,

where n, q ≥ 2 and B is a third order (n×n×q)-dimensional real partially symmetric
tensor. Tensor B is said to be partially symmetric in the sense that bijk = bjik, for
all i, j = 1, 2, · · · , n, and k = 1, 2, · · · , q.
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The cubic three-spherical optimization problem has the following form:

(1.3)
min

x∈�n,y∈�p,z∈�q
h(x) := Cxyz =

n∑
i=1

p∑
j=1

q∑
k=1

cijkxiyjzk

s.t. ‖x‖ = 1, ‖y‖ = 1, ‖z‖ = 1,

where n, p, q ≥ 2 and C is a third order (n× p× q)-dimensional real tensor.
These three problems arise from the best rank-one approximation to A, B and C,

respectively. In signal processing, a discrete multidimensional signal is treated as
an mth order tensor with m ≥ 3 and the optimal low-rank approximation of tensor
is used to approximate of multidimensional signal. When m = 3, (1.3) is used as a
suboptimal solution of low-rank approximation of tensor in [9]. In [15], the optimal
value of (1.1) with n = 3 is used to characterize the phase of the magnetic resonance
signal in biological tissues. The best rank-1 approximation of higher order tensor
has some applications in image processing and wireless communication systems,
etc., [3, 2, 5, 6, 7, 14]. Some other applications are about the eigenvalues of tensors;
see [12, 13].

Furthermore, these three problems are homogeneous polynomial optimization
problems, which have been considered by many scholars. In [14], some computa-
tional methods for solving (1.3) were proposed. In [11], minimizing the homoge-
neous polynomial over multi-spheres and unit-spheres was discussed there and some
bounds were presented via sum of squares (SOS) relaxation. In [4], the authors
proved the NP-hardness of the multi-variate homogeneous polynomial function and
proposed approximation algorithms for considered problems.

Contributions. First, we show that the cubic one-spherical/two-spherical opti-
mization problems are special cases of the cubic three-spherical optimization prob-
lem, which can be used to improve the bound presented by Theorem 4.4 in [11]
when d = 2. Then we reformulate the cubic two-spherical optimization problem as
an NP-hard quartic optimization problem over a unit sphere. Based on this refor-
mulation, the NP-hardness of the cubic two-spherical/three-spherical optimization
problems are established. These will be presented in Section 2.

In the subsequent discussion, we only focus on the cubic three-spherical optimiza-
tion problem. We show that when some matrices are simultaneously diagonalized
and min{n, p, q} = 2, the problem is polynomial time solvable. Then some PTAS
cases are discussed by grid sampling and SOS. These will be discussed in Section 3
and Section 4.

Last, we present a quality bound for (1.3) by finding the largest singular values
of some matrices in Section 5. Based on the quality bound, we propose a practical
method for solving (1.3) and report some preliminary results in the last section.

2. Relationships of these problems and their NP-hardness

When the tensor involved in (1.3) is symmetric, is the optimal value of (1.3)
equal to the optimal value of (1.1)? In other words, what are the relationships of
the considered problems? In this section, we answer the question clearly.

To answer this question, we first show that (1.3) can be equivalently reformulated
as (1.2) in polynomial time when the tensor is partially symmetric.

Theorem 2.1. Suppose that tensor C is a third order (n × n × q)-dimensional
partially symmetric tensor with respect to the first two indices. Then there exist
x∗ ∈ �n and z∗ ∈ �q such that (x∗, x∗, z∗) is a global minimizer of (1.3).
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Proof. Let (x̄, ȳ, z̄) be an optimal solution of (1.3) with optimal value λ ≤ 0. It is
easy to see that (x̄, ȳ, z̄) is a KKT point of (1.3), which indicates that there exist
α, β and γ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

q∑
k=1

cijkȳj z̄k = αx̄i, i = 1, · · · , n,
n∑

i=1

q∑
k=1

cijkx̄iz̄k = βȳj , j = 1, · · · , n,
n∑

i=1

n∑
j=1

cijkx̄iȳj = γz̄k, k = 1, · · · , q,

‖x̄‖ = 1,
‖ȳ‖ = 1,
‖z̄‖ = 1.

Then,

α = α
n∑

i=1

x̄2
i =

n∑
i=1

n∑
j=1

q∑
k=1

cijkx̄iȳj z̄k = λ.

Similarly, β = λ and γ = λ. Thus, there holds

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

q∑
k=1

cijkȳj z̄k = λx̄i, i = 1, · · · , n,
n∑

i=1

q∑
k=1

cijkx̄iz̄k = λȳj , j = 1, · · · , n,
n∑

i=1

n∑
j=1

cijkx̄iȳj = λz̄k, k = 1, · · · , q,

‖x̄‖ = 1,
‖ȳ‖ = 1,
‖z̄‖ = 1.

We denote M = Cz̄ as a real n × n symmetric matrix with its (i, j)th entry being

Mij =
q∑

k=1

cijkz̄k. Then, (2.1) leads to

⎧⎨
⎩

M(−ȳ) = −λx̄,
Mx̄ = −λ(−ȳ),

‖x̄‖ = 1, ‖ − ȳ‖ = 1,

which indicates that x̄,−ȳ are left-singular and right-singular vectors for −λ of M ,
respectively. From the symmetric property of matrix, we know that either λ or −λ
is the eigenvalue of M . Now we consider two cases.

Case 1. If λ is an eigenvalue of M associated with an eigenvector x∗, we denote
z∗ = z̄. Then, Cx∗x∗z∗ = λ.

Case 2. If −λ is an eigenvalue of M associated with an eigenvector x∗, we denote
z∗ = −z̄. Then, Cx∗x∗z∗ = λ.

Therefore, (x∗, x∗, z∗) is a global minimizer of optimization problem (1.3) and
the proof is completed. �

Now we are ready to show that (1.1) and (1.2) have the equal optimal values
when B is symmetric. To show this result, we need the following discussion.
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Algorithm 2.1.

• Initial Step: Input symmetric tensor B and an optimal solution
(
x(0), z(0)

)
satisfying

B
(
x(0)

)2

z(0) = λ ≤ 0,
(
x(0)

)�
z(0) ≥ 0.

Let t = 0.
• Iterative Step: If x(t) = z(t), Stop; Otherwise, let matrix M (t) = Bx(t) with

its entries (M (t))jk =
n∑

i=1

bijkx
(t)
i . Define

x(t+1) =
x(t) + z(t)

‖x(t) + z(t)‖ , z(t+1) = x(t).

Let t := t+ 1.

Lemma 2.1. The Algorithm 2.1 is well defined.

Proof. If
(
x(0), z(0)

)
is an optimal solution of (1.2), then

(
−x(0), z(0)

)
is also an

optimal solution of (1.2). So the assumption that
(
x(0)

)�
z(0) ≥ 0 is reasonable. �

Lemma 2.2. Suppose that Algorithm (2.1) terminates in a finite number of steps,
then there exists x∗ such that (x∗, x∗) is an optimal solution of (1.2).

Proof. At first, we show that for all t,
(
x(t+1), z(t+1)

)
is an optimal solution of (1.2).

Let
(
x(t), z(t)

)
be an optimal solution of (1.2) and x(t) − z(t) �= 0. From the

definition of M (t), we have {
M (t)x(t) = λz(t),
M (t)z(t) = λx(t).

This indicates that M (t)
(
x(t) + z(t)

)
= λ

(
x(t) + z(t)

)
, which implies that x(t)+z(t)

is an eigenvector of M (t) with eigenvalue λ. So

(
x(t) + z(t)

‖x(t) + z(t)‖

)�

M (t)

(
x(t) + z(t)

‖x(t) + z(t)‖

)
= λ,

that is to say,

A
(

x(t) + z(t)

‖x(t) + z(t)‖

)2

x(t) = λ.

Therefore, we can assert that
(
x(t+1), z(t+1)

)
is also an optimal solution of (1.2).

If Algorithm 2.1 terminates in a finite number of steps, there exists t such that
x(t) − z(t) = 0. Let

x∗ = x(t).

The proof is completed. �

Lemma 2.3. Suppose that (x∗, z∗) is an accumulation point of the infinite sequence{(
x(t), z(t)

)}
generated by Algorithm 2.1. Then either (x∗, x∗) or (−x∗,−x∗) is an

optimal solution of (1.2).
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Proof. As shown in Lemma 2.2, we know that for all t,
(
x(t), z(t)

)
is an optimal

solution of (1.2). Moreover,

(
x(t+1)

)�
z(t+1) =

(
x(t)+z(t)

‖x(t)+z(t)‖

)�
x(t) =

1+(x(t))�z(t)

‖x(t)+z(t)‖ =

√
1+(x(t))�z(t)

2 ≥ 0

for all t. This indicates that{(
x(t+1)

)�
z(t+1)

}2

−
{(

x(t)
)�

z(t)
}2

=
1

2

{
2
(
x(t)

)�
z(t) + 1

}{
1−

(
x(t)

)�
z(t)

}

≥
1−

(
x(t)

)�
z(t)

2
≥ 0,

where the first inequality holds since 0 ≤
(
x(t)

)�
z(t) ≤ 1. So, we can assert that

the sequence
{
(x(t))�z(t)

}
is non-decreasing.

Together with the fact that
{(

x(t)
)�

z(t)
}2

≤ 1 for all t, we have that

lim
t→∞

{
1−

(
x(t)

)�
z(t)

}
= 0.

Since ‖x(t)‖ = ‖z(t)‖ = 1, there exist convergent subsequences. Without loss of
generality, we assume that(

x(tu), z(tu)
)
→ (x∗, z∗) when tu → ∞.

It is easy to see that (x∗, z∗) is also an optimal solution of (1.2) and (x∗)�z∗ = 1.
This leads to x∗ = z∗ and the proof is completed. �

Combining Lemma 2.3 with Theorem 2.1, we have the following result.

Theorem 2.2. If C is symmetric in (1.3), then there exists x∗ such that (x∗, x∗, x∗)
is an optimal solution of (1.3).

Although (1.1) can be regarded as special cases of (1.2) and (1.3), we cannot
assert the NP-hardness of (1.2) and (1.3) from the NP-hardness of (1.1). This is
because we do not know the complexity of Algorithm 2.1. To establish the NP-
hardness of the other problems, we need another reformulation of (1.2).

Theorem 2.3. For each k, let B(k) be a symmetric n×n matrix with its (i, j)th ele-
ment as bijk. Then the cubic two-spherical optimization problem (1.2) is equivalent
to the following quartic maximization problem:

(2.2)
max
x∈�n

q∑
k=1

〈B(k)x, x〉2

s.t. ‖x‖ = 1.

Proof. Denote α(x) as a vector in �q, with its kth component as

α(x)k =
n∑

i,j=1

bijkxixj = x�B(k)x.
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Then we may rewrite (1.2) as

min
‖x‖=1

min
‖z‖=1

〈α(x), z〉 = min
‖x‖=1

−‖α(x)‖ = − max
‖x‖=1

‖α(x)‖,

where the first equality holds from the Cauchy-Schwarz inequality. Furthermore,
there holds

max
‖x‖=1

‖α(x)‖2 = max
‖x‖=1

q∑
k=1

〈B(k)x, x〉2,

which is problem (2.2). �

As presented in Theorem 4 by Nesterov in [10], problem (2.2) is NP-hard to
solve. Together with Theorem 2.1, we establish the NP-hardness of the other two
problems.

In addition, we can assert that the optimal value of (1.1) can be obtained by
solving (2.2). In other words, (1.1) can be equivalently reformulated as a quartic
optimization problem, which improves the bound given in Theorem 4.4 in [11] when
d = 2.

In conclusion, we focus on (1.3) in the subsequent discussions.

3. Polynomial time solvable cases of (1.3)

In spite of NP-hardness of (1.3), there exist some special cases which can be
solved in polynomial time. We present a couple of such cases in this section.

It is easy to see that Cxyz can be rewritten as

(3.1) Cxyz =
n∑

i=1

(y�A(i)z)xi =

p∑
j=1

(z�B(j)x)yj =

q∑
k=1

(x�C(k)y)zk,

with some suitable matrices A(i) ∈ �p×q, B(j) ∈ �q×n, and C(k) ∈ �n×p for
i = 1, 2, · · · , n, j = 1, 2, · · · , p and k = 1, 2, · · · , q. By using of this notation, we
have the following theorem.

Theorem 3.1. Suppose that there exist orthogonal matrices P ∈ �n×n and Q ∈
�p×p such that for all k = 1, 2, · · · , q, P�C(k)Q are n× p diagonal matrices. Then
(1.3) is polynomial time solvable.

Proof. Without loss of generality, after some orthogonal transformations, we may
assume that n ≥ p and C(k) (k = 1, 2, · · · , q) are n× p diagonal matrices. Then

Cxyz =

n,p,q∑
i,j,k=1

C
(k)
ij xiyjzk =

p∑
j=1

xjyj

q∑
k=1

C
(k)
jj zk.

Therefore, we have that

max
‖x‖=1

max
‖y‖=1

max
‖z‖=1

Cxyz ≤ max
‖x‖=1

max
‖y‖=1

max
‖z‖=1

p∑
j=1

x2
j + y2j
2

∣∣∣∣∣
q∑

k=1

C
(k)
jj zk

∣∣∣∣∣
= max

‖x‖=‖y‖=1

p∑
j=1

x2
j + y2j
2

max
‖z‖=1

q∑
k=1

C
(k)
jj zk ≤ max

‖x‖=‖y‖=1

p∑
j=1

x2
j + y2j
2

q∑
k=1

C
(k)
j∗j∗z

∗
k

=

q∑
k=1

C
(k)
j∗j∗z

∗
k,
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where j∗ and z∗ satisfy
q∑

k=1

C
(k)
j∗j∗z

∗
k = max

1≤j≤p
max
‖z‖=1

q∑
k=1

C
(k)
jj zk. Note that j∗ and

z∗ can be found in polynomial time. Let x∗ and y∗ be the unit vectors such
that their j∗th entries are 1 and the rest of entries are 0, then we have that

max
‖x‖=‖y‖=‖z‖=1

Cxyz = Cx∗y∗z∗.

Thus we can assert that (x∗, y∗,−z∗) is an optimal solution of (1.3), which
completes the proof. �

Remark. If there exist P and Q satisfying Theorem 3.1, then P and Q can be found
in polynomial time. The reason for this is that P and Q are formed by the common
singular vectors of matrix C(k) for all k = 1, · · · , q.

From the Cauchy-Schwarz inequality, it is easy to show that the cubic three-
spherical optimization problem (1.3) can be reformulated as the following problem:

(3.2)
max

x∈�n,y∈�p,
h1(x, y) := ‖Cxy‖2

s.t. x�x = 1, y�y = 1.

In fact,

h1(x, y) =

q∑
k=1

(

n∑
i=1

p∑
j=1

cijkxiyj)
2 =

n∑
i,s=1

p∑
j,t=1

(

q∑
k=1

cijkcstk)xiyjxsyt.

Furthermore, by letting tensor C̃ have its entries

c̃ijst =
1

4

q∑
k=1

(cijkcstk + csjkcitk + citkcsjk + cstkcijk),

the optimization problem (1.3) will be equivalent to the bi-quadratic optimization

problem, studied in [8], with tensor C̃. That is to say, the cubic optimization
problem may be regarded as a subclass of the bi-quadratic optimization problem.
According to Corollary 3.7 and Theorem 4.1 in [8], we have the following polynomial
time solvable case.

Theorem 3.2. If min{n, p, q} = 2, then the cubic three-spherical optimization
problem (1.3) is polynomial time solvable.

4. PTAS of (1.3)

Before going further, we quote a quality measure of approximation ratio, which
appeared in [8].

Definition 4.1. Let 0 ≤ ε < 1 and A be an approximation algorithm for the
minimization problem p. We say A is a (1− ε)-approximation algorithm if for any
instance of p, the algorithm A returns a feasible solution with its corresponding
objective value p such that

p− pmin ≤ ε(pmax − pmin),

where pmax (resp. pmin) is the maximum (resp. minimum) value of the objective of
p.

We say that the problem p has a polynomial time approximation scheme (PTAS)
if for every ε > 0, there exists a (1− ε)-approximation algorithm.
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For convenience of the notation, we call the feasible solution in Definition 4.1 a
(1− ε)-approximation solution. Based on this definition, we discuss the conditions
under which the problem (1.3) has PTAS.

First, we consider the following cubic polynomial optimization:

(4.1)

min
n,p,q∑

i,j,k=1,

cijkxiyjzk

s.t. ‖x‖ = 1, ‖y‖ = 1, ‖z‖ = 1,
z ≥ 0.

In this case, one can choose z ∈ �q
+ from grid points {0,

√
1
d , · · · ,

√
d−1
d , 1} such

that z21 + · · ·+ z2q = 1, for some given integer d. They represent uniform grid points

on the partial sphere {z ∈ �q
+ : ‖z‖ = 1}. We call the chosen points feasible grid

points. Then, the total number of such feasible grid points is
(
q+d−1

d

)
which is a

polynomial in q for any fixed integer d ≥ 1.
For each feasible grid point z̄, one can solve the maximum singular value of the

matrix Cz̄ with its (i, j)th entry being (Cz̄)ij = Cijkz̄k. It is well known that
the singular value of matrix can be solved in polynomial time. Let z̄ be the one
among these grid points whose largest singular value is the greatest and let x̄, ȳ
be the corresponding left-singular and right-singular vectors. Then, by Bomze and
de Klerk [1], the feasible solution pair (−x̄, ȳ, z̄) returns a (1 − 1

d )-approximation
solution to (4.1). Hence, the following result is established.

Theorem 4.1. There is a PTAS for solving problem (4.1).

Note that the variables x, y and z are equal “in rights”, and so Theorem 4.1
is valid when we consider the case that z ≥ 0 is replaced by x ≥ 0 or y ≥ 0. In
fact, for the original optimization, if we know the sign of optimal vector x∗ or y∗

or z∗ in advance, then the PTAS can be modified slightly. For instance, for A(i)

(i = 1, · · · , n) as in (3.1), if all entries in matrix A(i) have the same sign pattern,
then we have that

|Cxyz| = |y�(
n∑

i=1

A(i)xi)z| ≤ |y|�|
n∑

i=1

A(i)xi||z|,

where | · | denotes the entries being the absolute value of corresponding entries.
Hence the sign of the optimal solution (x∗, y∗, z∗) can be known in advance, which
leads to a PTAS. In a similar pattern, there exists a PTAS if each matrix B(j) or
C(k) has the same sign.

Furthermore, note the fact that the number of sign patterns for x, y and z are
at most 2n, 2p and 2q, respectively. Thus, if min{n, p, q} is fixed, then a PTAS for
(1.3) can be obtained by solving subproblem (4.1) at most 2min{n,p,q} times, which
leads to the following corollary.

Corollary 4.1. If min{n, p, q} is fixed, there exists a PTAS based on the grid
sampling on simplex for solving (1.3).

On the other hand, combining with Corollary 3.7 and Theorem 4.1 in [8], we
have the following result.

Corollary 4.2. If min{n, p, q} is fixed, then there exists a PTAS based on the sum
of the square for solving (1.3).
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5. Relative quality bound of (1.3)

In this section, we present a quality bound of (1.3). To present our results, we
begin with the classical definition of a relative quality bound:

Definition 5.1. Let A be a polynomial time approximation algorithm for the
minimization problem p. Let 0 < E ≤ 1. For any instance of p, we say A has a
relative quality bound 0 < E ≤ 1 for it, if the algorithm A can find an upper bound
p such that {

E · p ≤ pmin ≤ p, if pmin ≥ 0,
pmin ≤ p ≤ E · pmin, if pmin < 0

where pmin is the optimal value of p.

For simplicity, we call the bound p in Definition 5.1 E-bound.
Evidently, by this definition, the closer E is to 1, the better the approximation al-

gorithm will be. In general, Definition 5.1 is stronger than Definition 4.1. However,
it is clear that both definitions are equivalent for odd order spherical optimization
problems.

In the subsequent discussion, we will present a quality bound for (1.3) by finding
the largest singular values of matrices.

Theorem 5.1. There exists a 1√
min{n,p,q}

-bound for (1.3).

Proof. To get the relative quality bound, we rewrite (1.3) as

Cxyz =

q∑
k=1

(
x�C(k)y

)
zk,

for some suitable matrices C(k) as in (3.1).
For k = 1, 2, · · · , q, the following problem can be solved in polynomial time by

finding the largest singular value of matrix C(k):

max x�C(k)y
s.t. ‖x‖ = 1,

‖y‖ = 1.

Let k∗ be the one whose objective value is the largest and let x∗, y∗ be the
optimizer and let z∗k∗ be −1 accordingly and the rest of entries 0. Then for any
feasible solution pair (x, y, z), there holds

(Cxyz)2 =

(
q∑

k=1

(
x�C(k)y

)
zk

)2

=
q∑

i,j=1

(
x�C(i)y

) (
x�C(j)y

)
zizj

≤ q
q∑

i=1

(
x�C(i)y

)2
z2i ≤ q

q∑
i=1

(
x∗�C(k∗)y∗

)2

z2i ≤ q
(
x∗�C(k∗)y∗

)2

.

Furthermore, there holds

(
x∗�C(k∗)y∗

)2

= (Cx∗y∗z∗)2 ≤ max
‖x‖=‖y‖=‖z‖=1

(Cxyz)2 ≤ q
(
x∗�C(k∗)y∗

)2

,

which implies the result. �
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6. Practical method for solving (1.3)

Since the approximation solution obtained in Theorem 5.1 may not be a KKT
point of problem (1.3), we will propose a modified power method to get a ‘good’
solution of problem (1.3). Without loss of generality, we assume that n ≤ p ≤ q.

Algorithm 6.1.

• Initial step: Input tensor C and matrices A(i) as in (3.1).
– Substep 1: For each matrix A(i), compute the largest singular value λ(i)

and its corresponding left-singular and right-singular vectors y(i), z(i).
– Substep 2: Choose the index i0 with the singular value λ(i0) being the

largest among {λ(1), λ(2), · · · , λ(n)}.
– Substep 3: Let y(0) = y(i0), z(0) = zi0 , x(0) be the vector with x

(0)
i0

=
−1 and the rest of the entries being 0. Let l = 0.

• Iterative step: Compute matrix Cx(l) ∈ �p×q with its entries

(
Cx(l)

)
jk

=

n∑
i=1

Cijkx(l)
i .

For given matrix −Cx(l), find the largest singular value λ(l) and its corre-
sponding left-singular and right-singular vectors y(l+1), z(l+1). Let x(ln) be
the vector with entries

(x(ln))i = −
p∑

j=1

q∑
k=1

Cijky(l+1)
j z

(l+1)
k .

Take x(l+1) = x(ln)

‖x(ln)‖ and l = l + 1.

Obviously, Algorithm 6.1 includes two parts: the initial step and the iterative
step. By means of Theorem 5.1, the initial step provides a lower bound satisfying

Cxyz ≥ −
√
nCx(0)y(0)z(0), ∀ ‖x‖ = ‖y‖ = ‖z‖ = 1.

Furthermore,

(6.1) Cx(l+1)y(l+1)z(l+1) = −‖Cy(l+1)z(l+1)‖ ≤ Cx(l)y(l+1)z(l+1) ≤ Cx(l)y(l)z(l),

which indicates that the sequence {Cx(l)y(l)z(l)} generated by Algorithm 6.1 is non-
increasing. Based upon this observation, we establish the following convergence
result.

Theorem 6.1. Suppose that the sequence
{(

x(l), y(l), z(l)
)}

generated by Algorithm

6.1 is infinite. Then each accumulation point of the sequence
{
(x(l), y(l), z(l))

}
is a

KKT point of the problem (1.3).

Proof. Since {Cx(l+1)y(l+1)z(l+1)} is non-increasing, together with the fact that
Cxyz is bounded over unit spheres, we know that {Cx(l+1)y(l+1)z(l+1)} converges
and

lim
l→∞

(
Cx(l+1)y(l+1)z(l+1) − Cx(l)y(l)z(l)

)
= 0.

To establish the result, we need the convergence of {λ(l)}.
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From the obtained λ(l), it suffices to show the convergence of {x(l)}. From (6.1),
we have

Cx(l+1)y(l+1)z(l+1) − Cx(l)y(l)z(l) ≤ C(x(l+1) − x(l))y(l+1)z(l+1) ≤ 0

and

‖Cy(l+1)z(l+1)‖ ≥ |Cx(0)y0z(0)| > 0.

So we can assert that ‖x(l+1) − x(l)‖ → 0. Hence, we can assert that {x(l)} is
convergent. As a result, {λ(l)} is also convergent.

Suppose that (x∗, y∗, z∗) is an accumulation point of (x(l), y(l), z(l)). Without
loss of generality, we assume that

lim
l→∞

x(l) = x∗, lim
lt→∞

y(lt) = y∗, lim
lt→∞

z(lt) = z∗, lim
l→∞

λ(l) = λ∗.

From the Iterative step of Algorithm 6.1, we have

⎧⎪⎪⎨
⎪⎪⎩

Cx(l)y(l+1) = −λ(l)z(l+1),
Cx(l)z(l+1) = −λ(l)y(l+1),
Cy(l+1)z(l+1) = −‖Cy(l+1)z(l+1)‖x(l+1),
‖x(l+1)‖ = ‖y(l+1)‖ = ‖z(l+1)‖ = 1.

Then, it holds that

⎧⎪⎪⎨
⎪⎪⎩

Cx∗y∗ = −λ∗z∗

Cx∗z∗ = −λ∗y∗,
Cy∗z∗ = −‖Cy∗z∗‖x∗,
‖x∗‖ = ‖y∗‖ = ‖z∗‖ = 1.

As a consequence, we have

λ∗ = ‖Cy∗z∗‖ = −Cx∗y∗z∗,

which completes the proof. �

To illustrate performance of the procedure, let us consider two examples.

Example 6.1. This example is taken from [14]. Tensor C is a random low-rank
40×30×40 tensor generated as the sum of 20 rank-one tensors, each rank-one tensor
x⊗y⊗z is generated with components of x, y and z uniformly distributed in (0, 1).
Figure 1 shows the numerical results, where “inval” and “lval” denote the initial
value and corresponding lower bound obtained by the initial step of Algorithm 6.1,
respectively. “val” denotes the value obtained by Algorithm 6.1. From Figure 1,
we can claim that the algorithm performs well.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1524 XINZHEN ZHANG, LIQUN QI, AND YINYU YE

0 100 200 300 400 500 600
−900

−800

−700

−600

−500

−400

−300

−200

−100

problem number

fu
nc

tio
n 

va
lu

e

inval

val

lval

Figure 1. Numerical Results of Example 6.1

Example 6.2. Consider the problem (1.3) with (n × p × q)-dimensional tensor C
whose entries are uniformly distributed in (0, 1).

The following table reports the average value of 100 problems, where “Dim” de-
notes the dimension of tensor AC, “lval” denotes the average lower bound provided
by the initial step and Theorem 5.1, “alval” denotes the average value obtained by
Algorithm 6.1. “CPU” denotes the average working time of the computer excluding
the input/output time. “lval/alval” denotes the approximation ratio.

Table 1. Reports of Example 6.2.

Dim lval alval CPU lval/alval
(3× 5× 10) -6.7970 -6.2303 0.0441 1.0910
(5× 10× 30) -20.5247 -19.4263 0.0563 1.0565
(10× 30× 50) -63.2307 -61.3158 0.0798 1.0312
(30× 50× 100) -197.9735 -193.6653 0.4516 1.0222
(50× 100× 300) -618.4687 -612.3631 3.8347 1.0100
(100× 300× 500) -1945.3 -1936.4 22.5809 1.0046
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