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Abstract This paper discusses the computation of real Z-eigenvalues and H-
eigenvalues of nonsymmetric tensors. A generic nonsymmetric tensor has finitely
many Z-eigenvalues, while there may be infinitely many ones for special tensors. The
number of H-eigenvalues is finite for all tensors. We propose Lasserre type semidef-
inite relaxation methods for computing such eigenvalues. For every tensor that has
finitely many real Z-eigenvalues, we can compute all of them; each of them can be
computed by solving a finite sequence of semidefinite relaxations. For every tensor,
we can compute all its real H-eigenvalues; each of them can be computed by solving
a finite sequence of semidefinite relaxations.

Keywords Tensor · Z-eigenvalue · H-eigenvalue · Lasserre’s hierarchy · Semidefinite
relaxation
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1 Introduction

For positive integers m and n1, n2, . . . , nm , an m-order and (n1, n2, . . . , nm)-
dimensional real tensor can be viewed as an array in the space Rn1×n2×···×nm . Such a
tensor A can be indexed as
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A = (Ai1...im ), 1 ≤ i j ≤ n j , j = 1, . . . ,m. (1.1)

When n1 = · · · = nm = n, A is called an m-order n-dimensional tensor. In such
case, the tensor space Rn1×···×nm is denoted as Tm(Rn). A tensor in Tm(Rn) is said to
be symmetric if its entries are invariant under permutations of indices [i.e., Ai1...im =
A j1... jm whenever (i1, . . . , im) is a permutation of ( j1, . . . , jm)]. The subspace of
symmetric tensors in Tm(Rn) is denoted as Sm(Rn). For A ∈ Tm(Rn) and x :=
(x1, . . . , xn), we use the notation

⎧
⎪⎪⎨

⎪⎪⎩

Axm := ∑

1≤i1,...,im≤n
Ai1i2...im xi1xi2 · · · xim ,

Axm−1 :=
(

∑

1≤i2,...,im≤n
A j i2...im xi2 · · · xim

)

j=1,...,n

.
(1.2)

Note thatAxm−1 is an n-dimensional vector. First, we give some definitions of tensor
eigenvalues, which can be found in [21,31].

Definition 1.1 For a tensor A ∈ Tm(Rn), a pair (λ, u) ∈ R × R
n is called a real

Z-eigenpair of A if
Aum−1 = λu, uT u = 1. (1.3)

(The superscript T denotes the transpose.) Such λ is called a real Z-eigenvalue, and
such u is called a real Z-eigenvector associated to λ.

Definition 1.2 For a tensor A ∈ Tm(Rn), a pair (λ, u) ∈ R × R
n is called a real

H-eigenpair of A if
Aum−1 = λu[m−1], u �= 0. (1.4)

(The symbol u[m−1] denotes the vector such that (u[m−1])i = (ui )m−1 for i =
1, . . . , n). Such λ is called a realH-eigenvalue, and such u is called a realH-eigenvector
associated to λ.

Tensor eigenvalues are defined in Lim [21]. For real symmetric tensors, they are
also defined in Qi [31]. The Z-eigenvalus and H-eigenvalues have applications in
signal processing, control, and diffusion imaging [35,37,38]. For recent work on ten-
sor computations, we refer to [22,30,34]. In particular, Z-eigenvalues have important
applications in higher order Markov chains, which are shown in Sect. 2.2. Defini-
tions 1.1 and 1.2 are about real eigenvalues. Complex eigenvalues can be similarly
defined, if the complex values are allowed for (λ, u). We refer to the work [3,32].
There also exist other types of tensor eigenvalues in [4,5]. In this paper, we focus on
the computation of real Z/H-eigenvalues.

When a tensor is symmetric, the computation of real Z/H-eigenvalues is discussed
in [5]. For the case (m, n) = (3, 2), computing the largest Z-eigenvalues is discussed
in [36]. Shifted power methods are proposed in [15,40]. In [24], a method is proposed
to find best rank-1 approximations, which is equivalent to computing the largest Z-
eigenvalues. As shown in [12,40], it is NP-hard to compute extreme eigenvalues of
tensors. For nonnegative tensors, the largest H-eigenvalues can be computed by using
Perron–Frobenius theorem [4,23].
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For nonsymmetric tensors, there is no much earlier work on computing all real Z/H-
eigenvalues. An elementary approach for this task is to solve the polynomial systems
(1.3) and (1.4) directly, for getting all complex solutions by symbolicmethods, and then
choose real ones. This approach is typically very expensive to be used in computation.
A numerical experiment for this is given in Sect. 6.3.

There are fundamental differences between symmetric and nonsymmetric tensor
eigenvalues. For symmetric tensors, the Eqs. (1.3) and (1.4) follow from the Karush–
Kuhn–Tucker (KKT) conditions of some polynomial optimization problems, which
show the existence of real Z-eigenvalues and H-eigenvalues. Furthermore, every sym-
metric tensor has finitelymanyZ-eigenvalues [5]. However, the Eqs. (1.3) and (1.4) for
nonsymmetric tensors may not be the KKT conditions of some optimization problems.
The following examples show the differences between symmetric and nonsymmetric
tensor eigenvalues.

Example 1.3 Consider the tensor A ∈ T4(R2) such that Ai jkl = 0 except

A1112 = A1222 = 1,A2111 = A2122 = −1.

By the definition, (λ, x) is a Z-eigenpair if and only if

⎧
⎪⎨

⎪⎩

(x21 + x22 )x2 = λx1,

− (x21 + x22 )x1 = λx2,

x21 + x22 = 1.

One can check that A has no real Z-eigenvalues and neither complex ones. This is
confirmed by Theorem 3.1(i), because the semidefinite relaxation (3.4) is infeasible
for the order k = 3. By the definition, (λ, x) is an H-eigenpair if and only if it satisfies

⎧
⎪⎨

⎪⎩

(x21 + x22 )x2 = λx31 ,

− (x21 + x22 )x1 = λx32 ,

(x1, x2) �= (0, 0).

The tensor A has no real H-eigenvalues. This is also confirmed by Theorem 4.2(i),
because the semidefinite relaxation (4.5) is infeasible for the order k = 4.

It is possible that a tensor has infinitely many Z-eigenvalues.

Example 1.4 Consider the tensor A ∈ T4(R2) such that Ai jkl = 0 except

A1111 = A2112 = 1.

Then, (λ, x) is a Z-eigenpair of A if and only if

⎧
⎪⎨

⎪⎩

x31 = λx1,

x21 x2 = λx2,

x21 + x22 = 1.

(1.5)
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One can check that every λ ∈ [0, 1] is a realZ-eigenvalue, associated toZ-eigenvectors
(±√

λ,±√
1 − λ).

Note that the set of Z/H-eigenvalues of a nonsymmetric tensor is different with
different definitions on Axm−1. To clear this fact, we consider (2)-mode [Axm−1](2)
defined by

[Axm−1](2) :=
( ∑

1≤i1,i3,...,im≤n

Ai1 j i3...im xi1xi3 · · · xim
)

j=1,...,n
.

By directly computation, there is only 1 Z-eigenvalue and 1 H-eigenvalue with (2)-
mode for tensor A in Examples 1.3 and 1.4. These are different from Examples 1.3
and 1.4.

However, we would like to remark that the above examples are not generic cases.
That is, every generic tensor has finitely many Z-eigenvalues, and its number can be
given by explicit formula. Here, the meaning of the word “generic” is in the sense
of Zariski topology (i.e., there exists a polynomial φ in the entries of A such that
if φ(A) �= 0 then A has finitely many Z-eigenvalues). We refer this result to [3].
On the other hand, every tensor has finitely many H-eigenvalues, which is shown
in Proposition 4.1. From these facts, it is a well-posed question to compute all real
Z/H-eigenvalues, for generic tensors.

In this paper, we propose numerical methods for computing all real Z-eigenvalues
(if there are finitely many ones) and all real H-eigenvalues. For symmetric tensors, the
Z-eigenvalues and H-eigenvalues are critical values of some polynomial optimization
problems. This property was used very much in [5]. The method in [5] is based on
Jacobian SDP relaxations [26], which are used for polynomial optimization. Indeed,
the same kind of method can be used to compute all local minimum values of poly-
nomial optimization [29]. However, the method in [5] is not suitable for computing
eigenvalues of nonsymmetric tensors, because their eigenvalues are no longer critical
values of polynomial optimization problems.

This paper is organized as follows. Section 2 presents some preliminaries on poly-
nomial optimization, tensor eigenvalues and an application example in higher order
Markov chain. Section 3 proposes Lasserre type semidefinite relaxations for comput-
ing Z-eigenvalues. If there are finitely many real Z-eigenvalues, each of them can be
computed by solving a finite sequence of semidefinite relaxations. Section 4 proposes
Lasserre type semidefinite relaxations for computing all H-eigenvalues. Each of them
can be computed by solving a finite sequence of semidefinite relaxations. Numerical
examples are shown in Sect. 5. We make some discussions in Sect. 6.

2 Preliminaries and motivation

In this section, we recall some basics on polynomial optimization and tensor eigen-
values. After that, we present an application example arising in higher order Markov
chain.
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2.1 Preliminaries

In this subsection, we review some basics in polynomial optimization. We refer to
[17,18] for surveys in the area. In the space Rn , ‖u‖ denotes the standard Euclidean
norm of a vector u. For t ∈ R, �t� denotes the smallest integer not smaller than
t . Let R[x] be the ring of polynomials with real coefficients and in variables x :=
(x1, . . . , xn). The degree of a polynomial p, denoted by deg(p), is the total degree,
i.e., the highest degree of itsmonomials. Denote byR[x]d the set of real polynomials in
R[x]whose degrees are no greater thand. For a polynomial tuple h = (h1, h2, . . . , hs),
the ideal generated by h is the set

I (h) := h1 · R[x] + h2 · R[x] + · · · + hs · R[x].

The k-th truncation of I (h) is the set

Ik(h) := h1 · R[x]k−deg(h1) + · · · + hs · R[x]k−deg(hs ).

The complex and real algebraic varieties of h are respectively defined as

VC(h) := {x ∈ C
n | h(x) = 0}, VR(h) := VC(h) ∩ R

n .

A polynomial p is said to be sum of squares (SOS) if there exist p1, p2, . . . pr ∈ R[x]
such that p = p21 + p22 +· · ·+ p2r . The set of all SOS polynomials is denoted as�[x].
For a given degree m, denote

�[x]m := �[x] ∩ R[x]m .

The quadratic module generated by a polynomial tuple g = (g1, . . . , gt ) is

Q(g) := �[x] + g1 · �[x] + · · · + gt · �[x].

The k-th truncation of the quadratic module Q(g) is the set

Qk(g) := �[x]2k + g1 · �[x]2k−deg(g1) + · · · + gt · �[x]2k−deg(gt ).

Clearly, it holds that

I (h) =
⋃

k≥1

Ik(h), Q(g) =
⋃

k≥1

Qk(g).

If the tuple g is empty, then Q(g) = �[x] and Qk(g) = �[x]2k .
Let N be the set of nonnegative integers. For x := (x1, . . . , xn), α := (α1, . . . , αn)

and a degree d, denote

xα := xα1
1 · · · xαn

n , |α| := α1 + · · · + αn, N
n
d := {α ∈ N

n : |α| ≤ d}.
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Denote by R
N
n
d the space of all vectors y that are indexed by α ∈ N

n
d . For y ∈ R

N
n
d ,

we can write it as

y = (yα)α∈Nn
d
.

For f = ∑
α∈Nn

d
fαxα ∈ R[x]d and y ∈ R

N
n
d , we define the operation

〈 f, y〉 :=
∑

α∈Nn
d

fα yα. (2.1)

For every fixed f ∈ R[x]d , 〈 f, y〉 is a linear functional in y; every fixed y ∈ R
N
n
d ,

〈 f, y〉 is a linear functional in f . The operation 〈·, ·〉 gives a dual relationship between
the polynomial space R[x]d and the vector space RN

n
d . In 〈 f, y〉, the polynomial f is

in the left side, while the vector y is in the right. For an integer t ≤ d and y ∈ R
N
n
d ,

denote the t-th truncation of y as

y|t := (yα)α∈Nn
t
. (2.2)

Let q ∈ R[x] with deg(q) ≤ 2k. For each y ∈ R
N
n
2k , 〈qp2, y〉 is a quadratic form in

vec(p), the coefficient vector of the polynomial p, with deg(qp2) ≤ 2k. Let L(k)
q (y)

be the symmetric matrix such that

〈qp2, y〉 = vec(p)T
(
L(k)
q (y)

)
vec(p). (2.3)

The matrix L(k)
q (y) is called the k-th localizing matrix of q generated by y. It is linear

in y. For instance, when n = 2, k = 2 and q = x1x2 − x21 − x22 ,

L(2)
x1x2−x21−x22

(y) =
⎛

⎝
y11 − y20 − y02 y21 − y30 − y12 y12 − y21 − y03
y21 − y30 − y12 y31 − y40 − y22 y22 − y31 − y13
y12 − y21 − y03 y22 − y31 − y13 y13 − y22 − y04

⎞

⎠ .

If q = (q1, . . . , qr ) is a tuple of polynomials, we then define

L(k)
q (y) :=

⎡

⎢
⎣

L(k)
q1 (y)

. . .

L(k)
qr (y)

⎤

⎥
⎦ .

It is a block diagonal matrix. When q = 1 (the constant 1 polynomial), L(k)
1 (y) is

called the k-th moment matrix generated by y, and we denote

Mk(y) := L(k)
1 (y). (2.4)

For instance, when n = 2 and k = 2,
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M2(y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For a degree d, denote the monomial vector

[x]d := [
1, x1, . . . , xn, x21 , x1x2, . . . , x2n , . . . , xm1 , . . . , xmn

]T
. (2.5)

As shown in Example 1.4, there may be infinitely many real Z-eigenvalues for some
tensors. But this is not the case for a generic tensor. In (1.3), a real Z-eigenpair (λ, u)

of a tensorA is called isolated if there exists ε > 0 such that no other real Z-eigenpair
(μ, v) satisfies

|λ − μ| + ‖u − v‖ < ε.

Similarly, a real Z-eigenvalue λ is called isolated if there exists ε > 0 such that no
other real Z-eigenvalue μ satisfies |λ−μ| < ε. In practice, we need to check whether
a Z-eigenvalue is isolated or not. Denote the function

F(λ, x) :=
[

xT x − 1
Axm−1 − λx

]

. (2.6)

Clearly, (λ, u) is a Z-eigenpair if and only if F(λ, u) = 0. Let J (λ, x) be the Jacobian
matrix of the vector function F(λ, x) with respect to (λ, x).

Lemma 2.1 Let A ∈ Tm(Rn) and λ be a real Z-eigenvalue of A.

(i) If u is a real Z-eigenvector associated to λ and J (λ, u) is nonsingular, then (λ, u)

is isolated.
(ii) If u1, . . . , uN are the all realZ-eigenvectors ofA associated toλ and each J (λ, ui )

is nonsingular, then λ is an isolated real Z-eigenvalue of A.

Lemma 2.1 follows directly from the Inverse Function Theorem. For cleanness of
the paper, its proof is omitted here.

2.2 Motivation: application in higher order Markov chain

In higher order Markov chains [19,20], an mth order Markov chain fits observed data
by an m-order nonsymmetric tensor P ∈ Tm(Rn) whose entries are given such that

⎧
⎨

⎩

Pi1i2...im = Prob(Xt = i1| Xt−1 = i2; · · · ; Xt−m+1 = im) ∈ [0, 1],
n∑

i1=1
Pi1i2...im = 1, ∀ i2, . . . , im ∈ {1, . . . , n}.
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SuchP is called a transition probability tensor. A vector v ∈ R
n is said to be a limiting

(or stationary) probability distribution for P if

Pvm−1 = v, eT v = 1, v ≥ 0,

where e is the vector of all ones. The existence and uniqueness of stationary probability
distributions were discussed in [19]. Earlier work on this subject can be found in
[13,19,20]. Interestingly, the stationary probability distributions can be obtained by
computing the Z-eigenvalue of nonsymmetric tensor P . This can be seen as follows.

Suppose v is a stationary probability distribution of P . Let u = v/‖v‖, then

uT u = 1, u ≥ 0, 1 = eT v = ‖v‖(eT u), v = u/(eT u),

Pum−1 = 1

‖v‖m−1Pvm−1 = (eT u)m−1v = (eT u)m−2u.

That is, u is aZ-eigenvector ofP associated to theZ-eigenvalue (eT u)m−2.Conversely,
if λ is a Z-eigenvalue with the Z-eigenvector u ≥ 0, then

Pum−1 = λu, uT u = 1,

λ(eT u) = eT (Pum−1) =
∑

1≤i1,i2,...,im≤n

Pi1i2...im ui2 · · · uim =

∑

1≤i2,...,im≤n

ui2 · · · uim
n∑

i1=1

Pi1i2...im =
∑

1≤i2,...,im≤n

ui2 · · · uim = (eT u)m−1.

So, λ = (eT u)m−2. If we let v = u
eT u

, then

Pvm−1 = 1

(eT u)m−1Pum−1 = λu

(eT u)m−1 = v, eT v = 1, v ≥ 0.

That is, v is a stationary probability distribution vector. The above can be summarized
as follows:

• If v is a stationary probability distribution vector for P , then u = v
‖v‖ is a nonneg-

ative Z-eigenvector.
• If u is a nonnegative Z-eigenvector for P , then v = u

eT u
is a stationary probability

distribution vector.

Therefore, the stationary probability distribution vectors can be obtained by com-
puting all nonnegative Z-eigenvectors.

3 Computing real Z-eigenvalues

In this section, we first reformulate Z-eigenvalue computation as polynomial opti-
mization problem.
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Let A ∈ Tm(Rn) be a tensor. A real pair (λ, u) is a Z-eigenpair of A if and only if
Aum−1 = λu and uT u = 1. So,

λ = λuT u = uTAum−1 = Aum .

Hence, u is a Z-eigenvector if and only if

Aum−1 = (Aum)u, uT u = 1,

and the associated Z-eigenvalue is Aum . A generic tensor has finitely many Z-
eigenvalues that are all simple, as shown in [3]. For special tensors, there might be
infinitely many ones (see Example 1.4).

In this section, we aim at computing all real Z-eigenvalues when there are finitely
many ones. Let h be the polynomial tuple:

h = (Axm−1 − (Axm)x, xT x − 1
)
. (3.1)

Then, u is a Z-eigenvector of A if and only if h(u) = 0. Let Z(R,A) denote the set
of Z-eigenvalues of A. If it is a finite set, we list Z(R,A) monotonically as

λ1 < λ2 < · · · < λN .

We aim at computing them sequentially, from the smallest to the largest.

3.1 The smallest Z-eigenvalue

To compute the smallest Z-eigenvalue λ1, we consider the polynomial optimization
problem

min f (x) := Axm s.t. h(x) = 0, (3.2)

where h is as in (3.1). Note that u is a Z-eigenvector if and only if h(u) = 0, with the
Z-eigenvalue f (u). The optimal value of (3.2) is λ1, if VR(h) �= ∅. Let

k0 = �(m + 1)/2�. (3.3)

Lasserre’s hierarchy [16] of semidefinite relaxations for solving (3.2) is

⎧
⎪⎨

⎪⎩

f 1,k1 := min 〈 f, y〉
s.t. 〈1, y〉 = 1, L(k)

h (y) = 0,
Mk(y) � 0, y ∈ R

N
n
2k ,

(3.4)

for the orders k = k0, k0 + 1, . . .. See (2.3)–(2.4) for the notation L(k)
h (y) and Mk(y).

In the above, X � 0 means that the symmetric matrix X is positive semidefinite. The
dual optimization problem of (3.4) is
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{
f 2,k1 := max γ

s.t. f − γ ∈ I2k(h) + �[x]2k . (3.5)

As in [16], it can be shown that for all k

f 2,k1 ≤ f 1,k1 ≤ λ1

and the sequences { f 1,k1 } and { f 2,k1 } are monotonically increasing.

Theorem 3.1 Let A ∈ Tm(Rn) and let Z(R,A) be the set of its real Z-eigenvalues.
Then, we have the properties:

(i) The set Z(R,A) = ∅ if and only if the semidefinite relaxation (3.4) is infeasible
for some order k.

(ii) If Z(R,A) �= ∅ and λ1 is the smallest real Z-eigenvalue, then

lim
k→∞ f 2,k1 = lim

k→∞ f 1,k1 = λ1. (3.6)

If, in addition, Z(R,A) is a finite set, then for all k sufficiently big

f 2,k1 = f 1,k1 = λ1. (3.7)

(iii) Let k0 be as in (3.3). Suppose y∗ is a minimizer of (3.4). If there exists t ≤ k such
that

rank Mt−k0(y
∗) = rank Mt (y

∗), (3.8)

then λ1 = f 1,k1 and there are r := rank Mt (y∗) distinct real Z-eigenvectors
u1, . . . , ur associated to λ1.

(iv) Suppose Z(R,A) is a finite set. If there are finitely many real Z-eigenvectors
associated to λ1, then, for all k big enough and for every minimizer y∗ of (3.4),
the condition (3.8) is satisfied for some t ≤ k.

Proof (i) We prove the equivalence in two directions.
Sufficiency: Assume (3.4) is infeasible for some k. ThenA has no realZ-eigenpairs.

Suppose otherwise (λ, u) is such a one.Then [u]2k [see (2.5) for the notation] is feasible
for (3.4) for all values of k, which is a contradiction. So Z(R,A) = ∅.

Necessity:Assume Z(R,A) = ∅. Then the equation h(x) = 0 has no real solutions.
By the Positivstellensatz [2], −1 ∈ I (h) + �[x]. So, when k is big enough, −1 ∈
I2k(h)+�[x]2k , and then the optimization (3.5) is unbounded from above. By duality
theory, (3.4) must be infeasible, for all k big enough.

(ii) Note that xT x − 1 is a polynomial in the tuple h. So, −(xT x − 1)2 ∈ I (h)

and the set −(xT x − 1)2 ≥ 0 is compact. The ideal I (h) is archimedean [16]. The
asymptotic convergence (3.6) is proved in Theorem 4.2 of [16].

Next, we prove the finite convergence (3.7) when Z(R,A) �= ∅ is a finite set.
Write Z(R,A) = {λ1, . . . , λN }, with λ1 < · · · < λN . Let b1, . . . , bN ∈ R[t] be the
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univariate real polynomials in t such that bi (λ j ) = 0 when i �= j and bi (λ j ) = 1
when i = j . For i = 1, . . . , N , let

si := (λi − λ1)
(
bi ( f (x))

)2
.

Let s := s1 + · · · + sN . Then, s ∈ �[x]2k1 for some k1 > 0. The polynomial

f̂ := f − λ1 − s

vanishes identically on VR(h). By the Real Nullstellensatz [2, Corollary 4.1.8], there
exist an integer � > 0 and q ∈ �[x] such that

f̂ 2� + q ∈ I (h).

For all ε > 0 and c > 0, we can write f̂ + ε = φε + θε, where

φε = −cε1−2�( f̂ 2� + q),

θε = ε
(
1 + f̂ /ε + c( f̂ /ε)2�

)
+ cε1−2�q.

By Lemma 2.1 of [25], when c ≥ 1
2� , there exists k2 ≥ k1 such that, for all ε > 0,

φε ∈ I2k2(h), θε ∈ �[x]2k2 .

Hence, we can get

f − (λ1 − ε) = φε + σε,

where σε = θε + s ∈ �[x]2k2 for all ε > 0. This implies that, for all ε > 0,
γ = λ1 − ε is feasible in (3.5) for the order k2. Thus, we get f 2,k21 ≥ λ1. Note that

f 2,k1 ≤ f 1,k1 ≤ λ1 for all k and the sequence { f 2,k1 } is monotonically increasing. So,
(3.7) must be true when k ≥ k2.

(iii) Note thatMt (y∗) � 0 and L(t)
h (y∗) = 0, because t ≤ k. When (3.8) is satisfied,

by Theorem 1.1 of [6], there exist r := rank Mt (y∗) vectors u1, . . . , ur ∈ VR(h) such
that (we refer to (2.5) for the notation [ui ]2t )

y∗|2t = c1[u1]2t + · · · + cr [ur ]2t ,

with numbers c1, . . . , cr > 0. The condition 〈1, y∗〉 = 1 implies that

c1 + · · · + cr = 1.

By the notation 〈·, ·〉 as in (2.1), we can see that 〈 f, [ui ]2k〉 = f (ui ), so

f 1,k1 = 〈 f, y∗〉 = c1 f (u1) + · · · + cr f (ur ),
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f 1,k1 ≤ f (ui ) i = 1, . . . , r,

because each [ui ]2k is a feasible point for (3.4). Thus, we must have

f 1,k1 = f (u1) = · · · = f (ur ).

Also note that f 1,k1 ≤ λ1 and each ui is a Z-eigenvector. So,

f 1,k1 = f (u1) = · · · = f (ur ) = λ1.

(iv) When Z(R,A) is a finite set, both { f 1,k1 } and { f 2,k1 } have finite convergence
to λ1, by item (iii). If (3.2) has finitely many minimizers, i.e., λ1 has finitely many
Z-eigenvectors, the rank condition (3.8) must be satisfied when k is sufficiently big.
The conclusion follows from Theorem 2.6 of [27]. ��

In computation, we start to solve the semidefinite relaxation (3.4) from the smallest
value of k, which is k0 as in (3.3). If (3.4) is infeasible for k = k0, then A has no
real Z-eigenvalues; if (3.4) is feasible for k = k0, then solve it for an optimizer y∗. If
y∗ satisfies (3.8), then we get λ1 = f 1,k1 ; otherwise, increase the value of k by one,
and then repeat the above process. See Algorithm 3.6 for the implementation details.
The tensor A in Example 1.3 has no real Z-eigenvalues. This is confirmed by that the
relaxation (3.4) is infeasible for k = 3.

Remark 3.2 (1) The rank condition (3.8) can be used as a criterion to check whether
f 1,k1 = λ1 or not. If it is satisfied, then we can get r distinct minimizers u1, . . . , ur
of (3.2), i.e., each ui is Z-eigenvector of A. The vectors ui can be computed by
the method in [10], which is implemented in GloptiPoly 3 [11].

(2) Suppose (3.8) holds. If rank Mk(y∗) is maximum among the set of all optimizers
of (3.4), then we can get all mimizers of (3.2) [18, §6.6], i.e., we can get all
real Z-eigenvectors associated to λ1. When (3.4)–(3.5) are solved by primal-dual
interior point methods, typically we can get all real Z-eigenvectors associated to
λ1, provided there are finitely many.

(3) The condition (3.8) requires to know the ranks of Mt−k0(y
∗) and Mt (y∗). It would

be hard to evaluate themwhen thematrices are singular or close to be singular. The
matrix rank is equal to the number of positive singular values. In common practice,
people often determine the rank by counting the number of singular values bigger
than a tolerance (say, 10−6). This is a classical problem in numerical linear algebra.
We refer to Demmel’s book [8] for this question.

(4) For generic polynomial optimization problems, Lasserre’s hierarchies of semidef-
inite relaxations have finite convergence, as shown in [28]. However, the problem
(3.2) is not generic, because h depends on f . So, the finite convergence of (3.4)
cannot be proved by using the results of [28].
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3.2 Larger Z-eigenvalues

Suppose the i th smallest Z-eigenvalue λi is known. We want to determine whether the
next larger one λi+1 exists or not. If it exists, we show how to compute it; if it does
not, we give a certificate for the nonexistence. Let δ > 0 be a small number. Consider
the problem

min f (x) s.t. h(x) = 0, f (x) ≥ λi + δ. (3.9)

Clearly, the optimal value of (3.9) is the smallest Z-eigenvalue that is greater than or
equal to λi + δ. Let

ω(λi + δ) := min{λ ∈ Z(R,A) : λ ≥ λi + δ}. (3.10)

Lasserre’s hierarchy of semidefinite relaxations for solving (3.9) is

⎧
⎪⎨

⎪⎩

f 1,ki+1 := min 〈 f, y〉
s.t. 〈1, y〉 = 1, L(k)

h (y) = 0,
Mk(y) � 0, L(k)

f −λi−δ(y) � 0, y ∈ R
N
n
2k ,

(3.11)

for the orders k = k0, k0 + 1, . . .. The dual problem of (3.11) is

{
f 2,ki+1 := max γ

s.t. f − γ ∈ I2k(h) + Qk( f − λi − δ).
(3.12)

Similar to Theorem 3.1, we have the following convergence result.

Theorem 3.3 Let A ∈ Tm(Rn) and Z(R,A) be the set of real Z-eigenvalues of A.
Suppose λi ∈ Z(R,A). Then, we have the properties:

(i) The intersection Z(R,A) ∩ [λi + δ,+∞) = ∅ if and only if the semidefinite
relaxation (3.11) is infeasible for some order k.

(ii) If Z(R,A) ∩ [λi + δ,+∞) �= ∅, then

lim
k→∞ f 2,ki+1 = lim

k→∞ f 1,ki+1 = ω(λi + δ). (3.13)

If, in addition, Z(R,A) ∩ [λi + δ,+∞) is a finite set, then

f 2,ki+1 = f 1,ki+1 = ω(λi + δ) (3.14)

for all k sufficiently big.
(iii) Suppose y∗ is a minimizer of (3.11). If (3.8) is satisfied for some t ≤ k, then

ω(λi + δ) = f 1,ki+1 and there are r := rank Mt (y∗) distinct real Z-eigenvectors
u1, . . . , ur , associated to ω(λi + δ).

(iv) Suppose Z(R,A) ∩ [λi + δ,+∞) is a finite set and ω(λi + δ) has finitely many
real Z-eigenvectors. Then, for all k big enough, and for every minimizer y∗ of
(3.11), there exists t ≤ k satisfying (3.8).
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Proof The proof is mostly the same as for Theorem 3.1. In the following, we only list
the major differences.

(i) Necessity: If Z(R,A) ∩ [λi + δ,+∞) = ∅, then (3.9) is infeasible. By the
Positivstellensatz,

−1 ∈ I (h) + Q( f − λi − δ).

The rest of the proof is the same as for Theorem 3.1(i).
(ii) The ideal I (h) is archimedean, and so is I (h) + Q( f − λi − δ). The asymp-

totic convergence (3.13) can be implied by Theorem 4.2 of [16]. To prove the
finite convergence (3.14), we follow the same proof as for Theorem 3.1(ii). Sup-
pose Z(R,A) ∩ [λi + δ,+∞) = {ν1, . . . , νL}. Construct the polynomial s same as
there and let

f̂ = f − ω(λi + δ) − s.

Then f̂ vanishes identically on the set

{x ∈ R
n : h(x) = 0, f (x) − λi − δ ≥ 0}.

By the Real Nullstellensatz [2, Corollary 4.1.8], there exist an integer � > 0 and
q ∈ Q( f −λi − δ) such that f̂ 2� +q ∈ I (h). The rest of the proof is the same, except
replacing �[x] by Q( f − λi − δ), and �[x]2k by Qk( f − λi − δ).

(iii)–(iv) The proof is the same as for Theorem 3.1(iii)–(iv). ��
The convergence of semidefinite relaxations (3.11)–(3.12) can be checked by the

condition (3.8). When it is satisfied, the real Z-eigenvectors u1, . . . , ur can be com-
puted by themethod in [10]. Typically, we can get all realZ-eigenvectors if primal-dual
interior-point methods are used to solve the semidefinite relaxations. We refer to
Remark 3.2.

Next, we show how to use ω(λi + δ) to determine λi+1. Assume λi is isolated (oth-
erwise, there are infinitely many Z-eigenvalues). If λi is the largest real Z-eigenvalue,
then λ1, . . . , λi are the all real Z-eigenvalues and we can stop; otherwise, the next
larger one λi+1 exists. For such case, if δ > 0 in (3.9) is small enough, then ω(λi + δ)

as in (3.10) equals λi+1. Consider the optimization problem

{
ν+(λi , δ) := max f (x)

s.t. h(x) = 0, f (x) ≤ λi + δ.
(3.15)

The optimal value of (3.15) is the largest Z-eigenvalue of A that is smaller than or
equal to λi + δ, i.e.,

ν+(λi , δ) = max{λ ∈ Z(R,A) : λ ≤ λi + δ}.

The next larger Z-eigenvalue λi+1 can be determined as follows.
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Theorem 3.4 Let A ∈ Tm(Rn) and δ > 0. Assume λi is an isolated Z-eigenvalue of
A and λmax is the largest one. Then, we have the properties:

(i) For all δ > 0 sufficiently small, ν+(λi , δ) = λi .
(ii) If ν+(λi , δ) = λi and (3.11) is infeasible for some k, then λi = λmax and the

next larger Z-eigenvalue λi+1 does not exist.
(iii) If ν+(λi , δ) = λi and the condition (3.8) is satisfied for some k, then the next

larger Z-eigenvalue λi+1 = f 1,ki+1.

Proof (i) Note that ν+(λi , δ) is the smallest Z-eigenvalue greater than or equal to
λi +δ. When λi is isolated, for δ > 0 sufficiently small, we must have ν+(λi , δ) = λi .

(ii) When (3.11) is infeasible for some k, by Theorem 3.3(i), all the Z-eigenvalues
are smaller than λi + δ. Note that ν+(λi , δ) is the largest Z-eigenvalue that is smaller
than or equal to λi + δ. If λi = ν+(λi , δ), then λi must be the largest Z-eigenvalue,
i.e., λi = λmax .

(iii) When (3.8) is satisfied for some k, by Theorem 3.3(iii), we know

ω(λi + δ) = f 1,ki+1.

Note that ν+(λi , δ) is the largest Z-eigenvalue that is smaller than or equal to λi + δ,
while ω(λi + δ) is the smallest Z-eigenvalue that is bigger than or equal to λi + δ.
Since λi = ν+(λi , δ) and λi is isolated, we must have

λi+1 = ω(λi + δ),

which is the smallest Z-eigenvalue bigger than λi . ��
In the next, we show how to check if a real Z-eigenvalue λi is isolated or not.

Lemma 2.1 can be used to verify the isolatedness. It only gives a sufficient condition,
which may not be necessary sometimes. Here, we give a sufficient and necessary
condition. Consider the optimization problem

{
ν−(λi , δ) := min f (x)

s.t. h(x) = 0, f (x) ≥ λi − δ.
(3.16)

Clearly, for all δ > 0, it holds that

ν−(λi , δ) ≤ λi ≤ ν+(λi , δ).

Lemma 3.5 Let ν+(λi , δ), ν−(λi , δ) be the optimal values as in (3.15) and (3.16).
Then, λi is an isolated real Z-eigenvalue of A if and only if for some δ > 0

ν+(λi , δ) = ν−(λi , δ). (3.17)

When the above holds, λi is the unique Z-eigenvalue of A in [λi − δ, λi + δ].

123



J. Nie, X. Zhang

Proof By the construction of h as in (3.1), u is a Z-eigenvector if and only if h(u) = 0.
So, ν+(λi , δ) is the largest Z-eigenvalue that is smaller than or equal to λi + δ, while
ν−(λi , δ) is the smallest one that is greater than or equal to λi − δ. We prove the
equivalence in two directions.

Necessity: If λi is isolated, then for δ > 0 small enough, λi is the unique Z-
eigenvalue of A in the interval [λi − δ, λi + δ]. So, (3.17) holds.

Sufficiency:Assume (3.17) holds for some δ > 0, then ν−(λi , δ) = λi = ν+(λi , δ).

So, λi is the unique Z-eigenvalue in [λi − δ, λi + δ], and it must be isolated. ��
The problems (3.15) and (3.16) are polynomial optimization. Their optimal values

ν+(λi , δ), ν−(λi , δ) can be computed by solvingLasserre type semidefinite relaxations
that are similar to (3.11)–(3.12).

3.3 An algorithm for computing real Z-eigenvalues

For a given tensorA, we compute its real Z-eigenvalues if they exist, from the smallest
to the largest. First, we compute λ1 if it exists, by solving (3.4)–(3.5). After getting λ1,
we solve (3.11)–(3.12) and then determine λ2. If λ2 does not exist, we stop; otherwise,
we then determine λ3. Repeating this procedure, we can get all the real Z-eigenvalues,
when there are finitely many ones. This results in the following algorithm.

Algorithm 3.6 For a given tensor A ∈ Tm(Rn), compute its real Z-eigenvalues as
follows:

Step 0: Let k := k0, with k0 as in (3.3).
Step 1: Solve the relaxation (3.4). If it is infeasible, thenA has no real Z-eigenvalues

and stop; if it is feasible, compute an optimizer y∗.
Step 2: If (3.8) is satisfied, then λ1 = f 1,k1 and go to Step 3 with i = 1. Otherwise,

let k := k + 1 and go to Step 1.
Step 3: Let δ = 0.05. Solve (3.15), (3.16) for the optimal values ν+(λi , δ), ν−(λi , δ).

If ν+(λi , δ) = ν−(λi , δ), then λi is an isolated Z-eigenvalue and go to Step 4.
Otherwise, let δ := δ/5 and compute ν+(λi , δ), ν−(λi , δ) again. Repeat this
process until we get ν+(λi , δ) = ν−(λi , δ).

Step 4: Let k := k0, with k0 as in (3.3).
Step 5: Solve the relaxation (3.11). If it is infeasible, the largest Z-eigenvalue is λi

and stop. Otherwise, compute an optimizer y∗ for it.
Step 6: If (3.8) is satisfied, then λi+1 = f 1,ki+1 and go to Step 3 with i := i + 1.

Otherwise, let k := k + 1 and go to Step 5.

The correctness of Algorithm 3.6 and its convergence properties are proved in
Theorems 3.1, 3.3 and 3.4.

4 Computing real H-eigenvalues

In this section, we compute real H-eigenvalues. For every tensor A, the number of
H-eigenvalues is always finite. In Definition 1.2, if λ, u are allowed to achieve com-
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plex values, then we call such λ a complex H-eigenvalue and such u a complex
H-eigenvector.

Proposition 4.1 Every tensorA ∈ Tm(Cn) has n(m − 1)n−1 complex H-eigenvalues,
counting their multiplicities.

Proof Let I ∈ Tm(Cn) be the identity tensor whose only non-zero entries are Ii i ...i =
1 for i = 1, 2, . . . , n. Note that λ is a complex H-eigenvalue if and only if there
exists 0 �= u ∈ C

n such that Aum−1 = λu[m−1], that is, (A − λI)um−1 = 0. By the
definition of resultant [39], which we denote by Res, λ is an H-eigenvalue if and only
if

Res
(
(A − λI)xm−1) = 0. (4.1)

The resultant Res
(
(A − λI)xm−1

)
is homogeneous in the entries of A and λ. It has

degree D := n(m − 1)n−1. We can expand it as

Res
(
(A − λI)xm−1) = p0(A) + p1(A)λ + · · · + pD(A)λD.

By the homogeneity of Res, we know

pD(A) = Res
(− Ixm−1) �= 0,

because the homogeneous polynomial system −Ixm−1 = 0 has no nonzero complex
solutions. Hence, the leading coefficient of the polynomial Res

(
(A − λI)xm−1

)
in

λ is not zero, and the degree is D. This implies that (4.1) has D complex solutions,
counting multiplicities, and the lemma is proved. ��

Recall that (λ, u) is a real H-eigenpair if and only if

Aum−1 = λu[m−1], 0 �= u ∈ R
n .

Let m0 be the largest even number less than or equal to m, i.e.,

m0 = 2�(m − 1)/2�.

Note that m − 1 ≤ m0 ≤ m. We can normalize u as

(u1)
m0 + · · · + (un)

m0 = 1. (4.2)

Under this normalization, the H-eigenvalue λ can be given as

λ = λ(u[m0−m+1])T u[m−1] = (u[m0−m+1])TAum−1.

Let h be the polynomial tuple

h :=
(
Axm−1 − (

(x [m0−m+1])TAxm−1)x [m−1],
n∑

i=1

(xi )
m0 − 1

)
. (4.3)
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Then, u is an H-eigenvector normalized as in (4.2) if and only if h(u) = 0. Since A
has finitely many H-eigenvalues, we can order the real ones monotonically as

μ1 < μ2 < · · · < μN ,

if at least one of them exists. We call μi the i th smallest H-eigenvalue.

4.1 The smallest H-eigenvalue

In this subsection, we show how to determine μ1. Let h be as in (4.3), then μ1 equals
the optimal value of the optimization problem

{
min f (x) := (x [m0−m+1])TAxm−1

s.t. h(x) = 0.
(4.4)

Lasserre’s hierarchy [16] of semidefinite relaxations for solving (4.4) is

⎧
⎪⎨

⎪⎩

ρ
1,k
1 := min 〈 f, z〉

s.t. 〈1, z〉 = 1, L(k)
h (z) = 0,

Mk(z) � 0, z ∈ R
N
n
2k ,

(4.5)

for the orders k = k0, k0 + 1, . . . , where

k0 := �(m0 + m − 1)/2�. (4.6)

The dual optimization problem of (4.5) is

{
ρ
2,k
1 := max γ

s.t. f − γ ∈ I2k(h) + �[x]2k . (4.7)

As can be shown in [16], ρ
2,k
1 ≤ ρ

1,k
1 ≤ μ1 for all k, and the sequences {ρ1,k

1 } and
{ρ2,k

1 } are monotonically increasing.

Theorem 4.2 Let A ∈ Tm(Rn) and H(R,A) be the set of its real H-eigenvalues.
Then, we have the properties:

(i) The set H(R,A) = ∅ if and only if the semidefinite relaxation (4.5) is infeasible
for some order k.

(ii) If H(R,A) �= ∅, then for all k sufficiently big

ρ
1,k
1 = ρ

2,k
1 = μ1. (4.8)

(iii) Let k0 be as in (4.6). Suppose z∗ is a minimizer of (4.5). If there exists an integer
t ≤ k such that

rank Mt−k0(z
∗) = rank Mt (z

∗), (4.9)
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then μ1 = ρ
1,k
1 and there are r := rank Mt (z∗) distinct real H-eigenvectors

v1, . . . , vr associated to μ1 and normalized as in (4.2).
(iv) Suppose A has finitely many real H-eigenvectors associated to μ1. Then, for all

k big enough and for every minimizer z∗ of (4.5), there exists an integer t ≤ k
satisfying (4.9).

Proof It can be proved in the same way as for Theorem 3.1. The only difference is
that H(R,A) is always a finite set, by Proposition 4.1. To avoid being repetitive, the
proof is omitted here. ��

The tensor A in Example 1.3 has no real H-eigenvalues. This can be confirmed by
Theorem 4.2(i), because the semidefinite relaxation (4.5) is infeasible for the order
k = 4. The rank condition (4.9) is a criterion for checking the finite convergence in
(4.8). When it is satisfied, the real H-eigenvectors u1, . . . , ur can be computed by the
method in [10]. Typically, we can get all H-eigenvectors if primal-dual interior-point
methods are used to solve (4.5). We refer to Remark 3.2.

4.2 Larger H-eigenvalues

Suppose the i th smallest H-eigenvalue μi is known. We want to determine the next
larger one μi+1. If it exists, we show how to compute it; if not, we get a certificate for
the nonexistence. Let δ > 0 be a small number. Consider the optimization problem

min f (x) s.t. h(x) = 0, f (x) ≥ μi + δ, (4.10)

where f, h are same as in (4.4). The optimal value of (4.10) is the smallestH-eigenvalue
of A that is greater than or equal to μi + δ. Denote

�(μi + δ) := min{μ ∈ H(R,A) : μ ≥ μi + δ}. (4.11)

Lasserre’s hierarchy of semidefinite relaxations for solving (4.10) is

⎧
⎪⎨

⎪⎩

ρ
1,k
i+1 := min 〈 f, z〉

s.t. 〈1, z〉 = 1, L(k)
h (z) = 0,

Mk(z) � 0, L(k)
f−μi−δ(z) � 0, z ∈ R

N
n
2k ,

(4.12)

for the orders k = k0, k0 + 1, . . .. The dual problem of (4.12) is

{
ρ
2,k
i+1 := max γ

s.t. f − γ ∈ I2k(h) + Qk( f − μi − δ).
(4.13)

The properties of relaxations (4.12)–(4.13) are as follows.

Theorem 4.3 Let A ∈ Tm(Rn) and H(R,A) be the set of its real H-eigenvalues.
Assume that μi ∈ H(R,A). Then, we have the properties:
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(i) The intersection H(R,A) ∩ [μi + δ,+∞) = ∅ if and only if the semidefinite
relaxation (4.12) is infeasible for some order k.

(ii) If H(R,A) ∩ [μi + δ,+∞) �= ∅, then for all k sufficiently big

ρ
2,k
i+1 = ρ

1,k
i+1 = �(μi + δ). (4.14)

(iii) Let z∗ be a minimizer of (4.12). If (4.9) is satisfied for some t ≤ k, then there
exists r := rank Mt (z∗) real H-eigenvectors v1, . . . , vr that are associated to
�(μi + δ) and that are normalized as in (4.2).

(iv) SupposeA has finitely many realH-eigenvectors that are associated to�(μi +δ)

and that are normalized as in (4.2). Then, for all k big enough and for all
minimizer z∗ of (4.12), there exists t ≤ k satisfying (4.9).

Proof It can be proved in the same way as for Theorem 3.3. Note that H(R,A) is
always a finite set, by Proposition 4.1. ��

In the following, we show how to use �(μi + δ) to determine μi+1. Consider the
maximization problem

{
υi := max f (x)

s.t. h(x) = 0, f (x) ≤ μi + δ.
(4.15)

The optimal value of (4.15) is the largest H-eigenvalue of A that is smaller than or
equal to μi + δ, i.e.,

υi = max{μ ∈ H(R,A) : μ ≤ μi + δ}.

The next larger H-eigenvalue μi+1 can be determined as follows.

Theorem 4.4 Let A ∈ Tm(Rn) and δ > 0. Suppose μi ∈ H(R,A) and μmax is the
maximum real H-eigenvalue. Let �(λi + δ) be as in (4.11). Then, we have:

(i) For all δ > 0 small enough, υi = μi .
(ii) If υi = μi and (4.12) is infeasible for some k, then μi = μmax .
(iii) If υi = μi and (4.9) is satisfied for some k, then μi+1 = ρ

1,k
i+1.

Proof The proof is the same as for Theorem 3.4. Note that A has finitely many H-
eigenvalues, and μi is always isolated, as in Proposition 4.1. ��

Since (4.15) is a polynomial optimization, the optimal valueυi can also be computed
by solving Lasserre type semidefinite relaxations that are similar to (4.12)–(4.13).

4.3 An algorithm for all H-eigenvalues

We can compute all real H-eigenvalues of a tensor A sequentially, from the smallest
one to the largest one, if they exist. A similar version of Algorithm 3.6 can be applied.
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Algorithm 4.5 For a given tenosr A ∈ Tm(Rn), compute its real H-eigenvalues as
follows:

Step 0: Let k = k0, with k0 as in (4.6).
Step 1: Solve the relaxation (4.5). If it is infeasible, thenA has no real H-eigenvalues

and stop. Otherwise, compute an optimizer z∗.
Step 2: If (4.9) is satisfied, then μ1 = ρ

1,k
1 and go to Step 3 with i := 1. Otherwise,

let k := k + 1 and go to Step 1.
Step 3: Let δ = 0.05. Solve (4.15) for its optimal value υi . If υi = μi , go to Step 4.

Otherwise, let δ := δ/5 and compute υi again. Repeat this process until we
get υi = μi .

Step 4: Let k = k0, with k0 as in (4.6).
Step 5: Solve the relaxation (4.12). If it is infeasible, the largest H-eigenvalue is μi

and stop. If it is feasible, compute an optimizer z∗.
Step 6: If (4.9) is satisfied, then μi+1 = ρ

1,k
i+1 and go to Step 3 with i := i + 1.

Otherwise, let i := i + 1 and go to Step 5.

The correctness of Algorithm 4.5 and its convergence properties are proved in
Theorems 4.2, 4.3 and 4.4.

5 Numerical examples

In this section, we present numerical experiments for computing real Z-eigenvalues
and H-eigenvalues. The Algorithms 3.6 and 4.5 are implemented in MATLAB 7.10
on a Dell Desktop with Linux as OS with 8GB memory and Intel(R) CPU 2.8GHz.
The software Gloptipoly 3 [11] is used to solve the semidefinite relaxations in
the algorithms. The computational results are displayed with four decimal digits,
for cleanness of the presentation. The isolatedness of Z-eigenvalues are checked by
Lemma 2.1 or Lemma 3.5. In checking conditions (3.8) and (4.9), the rank of a matrix
is evaluated as the number of its singular values that are greater than 10−6. For odd
order tensors, the Z-eigenvalues always appear in ± pairs, so only nonnegative Z-
eigenvalues are displayed for them. In each table of this section, the time denotes
the consuming time in seconds of the computation.

5.1 Numerical examples of Z(H)-eigenvalues

Example 5.1 [9, Example 3] Consider the tensorA ∈ T4(R2) with entriesAi1i2i3i4 =
0 except

A1111 = 25.1, A1212 = 25.6, A2121 = 24.8, A2222 = 23.

Applying Algorithms 3.6 and 4.5, we get all the real Z/H-eigenvalues. They are shown
in Table 1. It took about 1 s to compute Z-eigenpairs, and about 3 s to compute
H-eigenpairs. The convergence f 1,ki → λi and ρ

1,k
i → μi occurs as follows:

f 1,31 = λ1, f 1,32 = λ2, ρ
1,4
1 = μ1, ρ

1,5
2 = μ2, ρ

1,4
3 = μ3.
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Table 1 Z/H-eigenpairs of the tensor in Example 5.1

Z-eigenvalue 23.000 25.1000

Z-eigenvector ± (0, 1) ± (1, 0)

H-eigenvalue 23.0000 25.1000 49.2687

H-eigenvector ± (0, 1) ± (1, 0) ± (0.8527,± 0.8285)

The Z-eigenvalues λ1, λ2 are isolated. This can be verified by Lemma 3.5, because

ν+(λi , 0.05) = ν−(λi , 0.05)

for all λi . Their isolatedness can also be verified by Lemma 2.1. For the function
F(λ, u) as in (2.6), its Jacobian matrices at (λ1, u1), (λ2, u2) are respectively

⎡

⎣
0 2 0

2.6 0 0
0 46 −1

⎤

⎦ ,

⎡

⎣
2 0 0

50.2 0 −1
0 −0.3 0

⎤

⎦ .

They are both nonsingular. By a direct calculation, one can show that the real Z-
eigenvalues are λ1 = 23, λ2 = 25.1, while the real H-eigenvalues are μ1 = 23,
μ2 = 25.1,μ3 = (

√
254393+481)/20. The computed Z/H-eigenpairs are all correct,

up to round-off errors. Actually, we have ‖Au3i − λi ui‖ = ‖Av3i − μiv
[3]
i ‖ = 0 for

i = 1, 2 and ‖Av33 − μ3v
[3]
3 ‖ ≈ 10−14.

Example 5.2 [33, Example 1] Consider the tensor A ∈ T3(R3) with the entries
Ai1i2i3 = 0 except

A111 = 0.4333, A121 = 0.4278, A131 = 0.4140, A211 = 0.8154, A221 = 0.0199,

A231 = 0.5598, A311 = 0.0643, A321 = 0.3815, A331 = 0.8834, A112 = 0.4866,

A122 = 0.8087, A132 = 0.2073, A212 = 0.7641, A222 = 0.9924, A232 = 0.8752,

A312 = 0.6708, A322 = 0.8296, A332 = 0.125, A113 = 0.3871, A123 = 0.0769,

A133 = 0.3151, A213 = 0.1355, A223 = 0.7727, A233 = 0.4089, A313 = 0.9715,

A323 = 0.7726, A333 = 0.5526.

By Algorithms 3.6 and 4.5, we get all the real Z-eigenvalues (only nonnegative ones
are computed because the order is odd), and get all the real H-eigenvalues. Three Z-
eigenpairs (λi , ui ) and four H-eigenpairs (μi , vi ) are obtained. The results are shown
in Table 2. It took about 4 s to compute the Z-eigenvalues, and about 5 s to get the
H-eigenvalues. The three Z-eigenvalues λ1, λ2, λ3 are all isolated. This can be verified
by Lemma 3.5, because

ν−(λi , 0, 05) = ν+(λi , 0.05)
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Table 2 Z/H-eigenpairs of the tensor in Example 5.2

Z-eig. λi Z-eigvec. ui ‖Au2i − λi ui‖

0.2331 (0.3736, 0.1703, − 0.9118) 3.8 × 10−9

0.4869 (0.6666, 0.4324, − 0.6072) 1.2 × 10−7

2.7418 (0.4086, 0.6588, 0.6317) 9.1 × 10−8

H-eig. μi H-eigvec. vi ‖Av2i − μiv
[2]
i ‖

1.3586 (0.5795, − 0.4276, 0.6938) 1.3 × 10−7

1.4985 (0.6782, 0.6327, 0.6938) 8.6 × 10−7

1.5526 (− 0.4367, 0.8090, 0.3935) 7.7 × 10−7

4.7303 (0.4956, 0.6174, 0.6109) 4.6 × 10−8

for all λi . The isolatedness is also confirmed by Lemma 2.1. The smallest
singular values of the Jacobian matrix of F(λ, x) at (λi , ui ) are respectively
0.6015, 0.7061, 0.5614. They are all nonsingular. The computed eignpairs are all cor-
rect, up to tiny numerical errors. The residual errors ‖Au2i − λi ui‖, ‖Av2i − μiv

[2]
i ‖

are shown in Table 2.

Example 5.3 [14, §4.1] Consider the tensor A ∈ T3(R3) with Ai1i2i3 = 0 except

A111 = 0.0072, A121 = −0.4413, A131 = 0.1941, A211 = −0.4413, A221 = 0.0940,

A231 = 0.5901, A311 = 0.1941, A321 = −0.4099, A331 = −0.1012, A112 = −0.4413,

A122 = 0.0940, A132 = −0.4099, A212 = 0.0940, A222 = 0.2183, A232 = 0.2950,

A312 = 0.5901, A322 = 0.2950, A332 = 0.2229, A113 = 0.1941, A123 = 0.5901,

A133 = −0.1012, A213 = −0.4099, A223 = 0.2950, A233 = 0.2229, A313 = −0.1012,

A323 = 0.2229, A333 = −0.4891.

By Algorithms 3.6 and 4.5, we get all the real Z-eigenvalues (only nonnegative ones
are computed because the order is odd), and get all the real H-eigenvalues. They are
shown in Table 3. It took about 4 s to compute the Z-eigenvalues, and about 3 s to get
the H-eigenvalues. It can be verified that

ν−(λi , 0.05) = ν+(λi , 0.05)

for all λi . By Lemma 3.5, we know λ1, λ2 are isolated Z-eigenvalues. This is also
confirmedbyLemma2.1. The smallest singular value of the Jacobianmatrix of F(λ, x)
as in (2.6) at (λ1, u1), (λ2, u2) are respectively 0.9999, 0.9501. (For λ2, there are four
Z-eigenvectors u2. At each of them, the smallest singular value is the same.) They are
all nonsingular. The computed eigenpairs (λi , ui ) and (μi , vi ) are correct, up to small
numerical errors. Their residual errors are shown in Table 3.
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Table 3 Z/H-eigenvalues of the
tensor in Example 5.3

Z-eig. λi Z-eigvec. ui ‖Au2i − λi ui‖

0.0000 (− 0.6059, 0.3195, 0.7285) 2.8 × 10−8

0.5774 (− 0.8062, − 0.4872, 0.3354) 1.3 × 10−7

(− 0.1121, 0.1995, − 0.9734) 2.1 × 10−7

(0.8120, − 0.5685, 0.1323) 1.9 × 10−7

(0.1065, 0.8562, 0.5054) 3.2 × 10−7

H-eig. μi H-eigvec. vi ‖Av2i − μiv
[2]
i ‖

0.0000 (0.7954, 0.2492, 0.5524) 7.1 × 10−7

0.7875 (0.1760, 0.8067, 0.5642) 3.6 × 10−8

Table 4 Z/H-eigenvalues of the tensor in Example 5.4

n Z-eig. λi (≥ 0) time H-eig. μi time

2 10.5518 0.6 None 0.1

3 0.2336, 1.6614, 10.5063 3.3 − 2.5615, 0.3456; 2.1

4 3.3651, 8.8507, 10.4981 5.2 − 6.2888, − 0.7048, 2.8947, 7.9

5.9245

5 1.7701, 1.9260, 4.0140, 38.8 − 8.8357, − 6.8068, − 6.5504, 66.3

4.1174, 4.3543, 8.8414, 3.3380, 6.5247, 7.1458,

14.4904 8.4572, 11.0901

Example 5.4 [24, Example 3.19] Consider the tensor A ∈ T3(Rn) such that

Ai1i2i3 = tan

(

i1 − i2
2

+ i3
3

)

.

Applying Algorithms 3.6 and 4.5, we get all the real Z-eigenvalues (only nonnega-
tive ones are computed because the order is odd), and get all the real H-eigenvalues.
The results are shown in Table 4, for the dimensions n = 2, 3, 4, 5. There are no
real H-eigenvalues when n = 2. The Z-eigenvalues are all isolated. This is verified
by Lemma 3.5, because ν−(λi , 0.05) = ν+(λi , 0, 05) for all λi . Since there are 28
eigenvalues, the eigenvectors are not shown, for neatness of the paper. They are all
correct, up to small numerical errors.

Example 5.5 Consider the tensor A ∈ T4(R3) such that

Ai1...i4 = arctan(i1i
2
2 i

3
3 i

4
4).

By Algorithms 3.6 and 4.5, we get all the real Z/H-eigenvalues. It took about 3 s to
get the Z-eigenvalues, and about 5 s to get the H-eigenvalues. The results are shown in
Table 5. All the Z-eigenvalues λi are isolated, which is verified by Lemma 3.5 because
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Table 5 Z/H-eigenvalues of the
tensor in Example 5.5

Z-eig. λi Z-eigvec. ui ‖Au3i − λi ui‖

− 0.2700 (0.9306, 0.0372, − 0.3641) 6.7 × 10−8

0.0003 (0.2402, − 0.7552, 0.6099) 1.2 × 10−7

13.8286 (0.5701, 0.5792, 0.5827) 3.3 × 10−7

H-eig. μi H-eigvec. vi ‖Au3i − λi u
[3]
i ‖

− 0.3662 (0.9413, 0.3559, − 0.6677) 4.2 × 10−9

0.0005 (0.2924, − 0.9139, 0.7365) 4.4 × 10−7

41.4705 (0.7566, 0.7607, 0.7622) 8.8 × 10−7

Table 6 Z/H-eigenvalues of the
tensor in Example 5.6

Z-eig. λi Z-eigvec. ui ‖Au3i − λi ui‖

0.0000 (0.2131,− 0.7720, 0.5989) 5.5 × 10−11

0.0002 (0.6244,− 0.1938,−0.7567) 4.9 × 10−9

0.4572 (0.6083, 0.5756, 0.5464) 7.7 × 10−9

H-eig. μi H-eigvec. vi ‖Av3i − μiv
[3]
i ‖

0.0000 (0.2552, − 0.9246, 0.7173) 8.2 × 10−9

0.0005 (− 0.8465, 0.4326, 0.8197) 8.3 × 10−9

1.3581 (0.7732, 0.7593, 0.7463) 5.0 × 10−8

ν−(λi , 0.05) = ν+(λi , 0.05) for all λi . The computedZ/H-eigenpairs (λi , ui ), (μi , vi )

are all correct, up to small numerical errors. The residual errors are shown in Table 5.

Example 5.6 Consider the tensor A ∈ T4(R3) such that

Ai1...i4 = (1 + i1 + 2i2 + 3i3 + 4i4)
−1.

By Algorithms 3.6 and 4.5, we get all the real Z/H-eigenvalues. It took about 4 s to
compute Z-eigenvalues, and about 5 s for H-eigenvalues. The results are shown in
Table 6. The Z-eigenvalues λi are all isolated. This is verified by Lemma 3.5, because

ν−(λi , 0.0001) = ν+(λi , 0.0001)

for all λi . The computed eigenpairs (λi , ui ), (μi , vi ) are all correct, up to small numer-
ical errors. The residual errors are shown in Table 6.

Example 5.7 Consider the tensor A ∈ T5(Rn) such that

Ai1...i5 =
( 5∑

j=1

(−1) j−1 exp(i j )
)−1

.
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Table 7 Z/H-eigenvalues of the tensor in Example 5.7

n Z-eig. λi (≥ 0) Time H-eig. μi Time

2 0.4721 1.0 0.5138, 1.2654 2.2

3 0.6158 2.9 0.5196, 2.0800, 2.2995, 2.4335 13.6

4 0.7682 4.6 0.5199, 2.0964, 2.2980, 2.3991, 205.7

2.9454, 4.4609, 4.9588, 5.4419

5 0.8384 31.8 0.5199, 2.0978, 2.2997, 2.3860, 18,243

2.4010, 2.9658, 4.4713, 4.4902,

4.6880, 4.7008, 5.0136, 5.7891,

6.0668, 7.3250, 7.3469, 8.8555

Table 8 Z/H-eigenvalues of the tensor in Example 5.8

n Z-eig. λi (≥ 0) time H-eig. μi time

2 0.0024, 0.0038, 1.4928 5.1 0.0060, 2.0960 1.5

3 0.0067, 0.0161, 3.6417 6.2 − 0.0401,− 0.0243, 0.0086, 15.9

0.0235, 0.1568, 0.6635,

1.4958, 6.2378

4 0.0000, 0.0107, 0.0396, 14.3 − 0.0240,− 0.0087,−0.0001, 59.6

6.9922 0.0000, 0.0102, 0.0258,

0.0437, 1.5761, 2.6824,

4.1089, 5.8270, 13.7960

For the dimensions n = 2, 3, 4, 5, all the real Z/H-eigenvalues are found by Algo-
rithms 3.6 and 4.5. Because the order is odd, only nonnegative Z-eigenvalues are
computed. The results are shown in Table 7.

The Z-eigenvalues are all isolated, verified by Lemma 3.5. This is because

ν−(λi , 0.05) = ν+(λi , 0.05)

for all λi . The computed eigenpairs are all correct, up to round-off errors. Since there
are 34 computed eigenpairs, for neatness of the paper, the eigenvectors and the residual
errors are not displayed.

Example 5.8 Consider the tensor A ∈ T3(Rn) such that

Ai1i2i3 = 1

10

(

i1 + 2i2 + 3i3 −
√

i21 + 2i22 + 3i23

)

.

For the dimensions n = 2, 3, 4, we get all the real Z-eigenvalues (only nonnegative
ones are computed because the order is odd), and get all the real H-eigenvalues. The
results are shown in Table 8.
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The Z-eigenvalues are all isolated, verified by Lemma 3.5. This is because

ν−(λi , 0.001) = ν+(λi , 0.001)

for all λi . The computed eigenpairs are all correct, up to round-off errors. Since there
are 32 computed eigenpairs, for neatness of the paper, the eigenvectors and the residual
errors are not displayed.

5.2 Numerical examples of stationary probability distribution vectors

In this subsection, we report numerical examples on computing all stationary proba-
bility distribution vectors.

Example 5.9 Consider the 3rd order 3-dimensional transition probability tensor P ∈
T3(R3) whose nonzero entries are

P112 = 1, P121 = 1, P113 = 1, P131 = 1, P211 = 1,
P222 = 1, P223 = 1, P232 = 1, P333 = 1.

Its stationary probability distribution vectors are exactly

v1 = (0, 1, 0), v2 = (0, 0, 1), v3 = (
1

2
,
1

2
, 0).

By Algorithm 3.3, we get all the stationary probability distribution vectors, with the
relaxation orders 2, 2, 3, respectively. It took about 4 s. One can verify that ‖Pv2i −
vi‖ = 0 for i = 1, 2, 3.

In the following examples, for P ∈ Tm(Rn), Pi j ... (i, j, . . . ∈ {1, . . . , n}) denotes
the matrix whose entries are given as

(Pi j ...)t1t2 = Pt1t2i j ... (1 ≤ t1, t2 ≤ n).

Example 5.10 [1] Consider the transition probability tensor P ∈ T3(R4) that is given
as:

P1 =

⎛

⎜
⎜
⎝

0.2091 0.2834 0.2194 0.1830
0.3371 0.3997 0.3219 0.3377
0.3265 0.0560 0.3119 0.2961
0.1273 0.2608 0.1468 0.1832

⎞

⎟
⎟
⎠ ;P2 =

⎛

⎜
⎜
⎝

0.1952 0.2695 0.2055 0.1690
0.3336 0.3962 0.3184 0.3342
0.2954 0.0249 0.2808 0.2650
0.1758 0.3094 0.1953 0.2318

⎞

⎟
⎟
⎠ ;

P3 =

⎛

⎜
⎜
⎝

0.3145 0.3887 0.3248 0.2883
0.0603 0.1230 0.0451 0.0609
0.3960 0.1255 0.3814 0.3656
0.2293 0.3628 0.2487 0.2852

⎞

⎟
⎟
⎠ ;P4 =

⎛

⎜
⎜
⎝

0.1686 0.2429 0.1789 0.1425
0.3553 0.4180 0.3402 0.3559
0.3189 0.0484 0.3043 0.2885
0.1571 0.2907 0.1766 0.2131

⎞

⎟
⎟
⎠ .

It has only one nonnegative Z-eigenvalue. By Algorithm 3.6, we get the Z-eigenvector

u = (0.4771, 0.5716, 0.4875, 0.4560).
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It took about 2 s. By a scaling, we get its unique stationary probability distribution
vector

v = (0.2395, 0.2869, 0.2447, 0.2288).

The residual error ‖Pv2 − v‖ ≈ 9.2 × 10−9.

Example 5.11 [19] Consider the transition probability tensorP ∈ T4(R3) that is given
as:

P11 =
⎛

⎝
0.3721 0.2600 0.4157
0.4477 0.5000 0.4270
0.1802 0.2400 0.1573

⎞

⎠ ;P21 =
⎛

⎝
0.3692 0.2673 0.3175
0.4667 0.5594 0.5079
0.1641 0.1733 0.1746

⎞

⎠ ;

P31 =
⎛

⎝
0.4227 0.2958 0.2353
0.4124 0.5563 0.5588
0.1649 0.1479 0.2059

⎞

⎠ ;P12 =
⎛

⎝
0.3178 0.2632 0.3194
0.5212 0.6228 0.5833
0.1610 0.1140 0.0972

⎞

⎠ ;

P22 =
⎛

⎝
0.2836 0.2636 0.3042
0.5012 0.6000 0.5250
0.2152 0.1364 0.1708

⎞

⎠ ;P32 =
⎛

⎝
0.3382 0.2396 0.3766
0.5147 0.6406 0.4935
0.1471 0.1198 0.1299

⎞

⎠ ;

P13 =
⎛

⎝
0.3204 0.2985 0.3500
0.4854 0.5000 0.5000
0.1942 0.2015 0.1500

⎞

⎠ ;P23 =
⎛

⎝
0.4068 0.2816 0.3594
0.3898 0.5143 0.4219
0.2034 0.2041 0.2188

⎞

⎠ ;

P33 =
⎛

⎝
0.3721 0.3529 0.3000
0.5349 0.3971 0.5500
0.0930 0.2500 0.1500

⎞

⎠ .

By Algorithm 3.6, we get the unique Z-eigenvector

u = (0.4719, 0.8420, 0.2614).

It took about 2 s. After a scaling, we get the unique stationary probability distribution
vector

v = (0.2995, 0.5345, 0.1659).

The residual error ‖Pv3 − v‖ ≈ 7.5 × 10−7.

6 Discussion

This paper proposed semidefinite relaxation methods for computing real Z/H-
eigenvalues for nonsymmetric tensors. We can compute all real Z-eigenvalues when
there are finitely many ones. Moreover, all real H-eigenvalues can be computed, since
its number is always finite. In this section, we discuss some related issues.
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6.1 Eigenvalues of symmetric tensors

Algorithms 3.6 and 4.5 are designed to compute Z/H-eigenvalues for nonsymmetric
tensors.As a special case, they can also be applied to symmetric tensors. For computing
symmetric tensor eigenvalues, a hierarchy of semidefinite relaxations was proposed
in [5, §3]. It is based on polynomial optimization and Jacobian representations. The
method in this paper does not use Jacobian representations. When the tensors are sym-
metric, these two approaches are mathematically equivalent. An interesting question
is whether the relaxation orders required for convergence are the same or not. Here,
we give an example for comparison. Consider the symmetric tensor A ∈ S4(R2) [5,
Example 4.4] such that Ai jkl = 0 except A1111 = 3, A2222 = 1, and

A1122 = A1212 = A1221 = A2112 = A2121 = A2211 = 1

2
.

This tensor has two Z-eigenvalues λ1 = 1, λ2 = 3 and three H-eigenvalues μ1 =
1, μ2 = 3, μ3 ≈ 3.8028. Both the methods in [5] and in this paper compute the
eigenvalues correctly. We list the least values of relaxation orders k, for which the
convergence occurs, for the methods in [5] and in this paper (for our method, they are
the smallest k such that f 1,ki = λi and ρ

1,k
i = μi ). The values of such orders k are

listed as follows:

Z/H-eigenvalues λ1 λ2 μ1 μ2 μ3

The method in [5] 2 3 3 5 5
The method in this paper 3 3 4 5 5

By directly computation, the initial relaxation orders k0 is larger than that of [5] in
general. However, except for λ1 andμ1, the relaxation orders required for convergence
are the same. For λ1 (resp., μ1), 3 (resp., 4) is the lowest order of the semidefinite
relaxation (3.4), while 2 (resp., 3) is the lowest one in [5]. For the above tensor, there
is no much difference for the required relaxation orders. For more general symmetric
tensors, we do not know whether the same conclusion is true or not.

6.2 Tensors with infinitely many Z-eigenvalues

Consider the tensor A in Example 1.4. It has infinitely many real Z-eigenvalues.
Indeed, every λ ∈ [0, 1] is a Z-eigenvalue. By Algorithm 3.6, we can get the smallest
real Z-eigenvalue λ1 = 0, together with the eigenvector u1 = ± (0, 1). However, λ1
is not isolated. In Lemma 3.5, the equality ν−(λ1, δ) = ν+(λ1, δ) is not satisfied for
any δ > 0. In Lemma 2.1, the Jacobian matrix

J (λ, x) =
⎡

⎣
0 2x1 2x2

−x1 3x21 − λ 0
−x2 2x1x2 x21 − λ

⎤

⎦
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is singular at (λ1, u1). The second smallest real Z-eigenvalue λ2 does not exist.
Similarly, if we apply Algorithm 3.6 to −A, then we can get the largest real Z-

eigenvalue λmax = 1, with the Z-eigenvector ± (1, 0).

6.3 Comparison with other methods

A straightforward approach for computing Z/H-eigenvalues is to solve the polynomial
Eqs. (1.3) and (1.4) directly. Symbolic methods can be naturally used for the com-
putation. As mentioned in the introduction, such methods are usually very expensive
to be used. It usually takes much longer time. We compare with the symbolic solver
solve provided by MATLAB, which calls the software MAPLE. We use it to compute
the Z/H-eigenvalues of the tensor in Example 5.4, for the dimensions n = 2, 3, 4, 5.
The consumed time by solve is listed as follows:

Time n = 2 n = 3 n = 4 n = 5

Z-eig. 1.4 5.2 41.1 4297.4
H-eig. 0.7 9.8 13646.0 (∗) 2574.0

The time consumed by Algorithms 3.6 and 4.5 is shown in Table 4. As one can
see, the symbolic solver takes much more time, especially for n = 4, 5. For the case
n = 5, solve can only get one H-eigenvalue but not all, which already took about
2574 s. We put the mark (∗) in the above table for this fact. In contrast, Algorithm 4.5
takes about 38 s to compute all the real Z-eigenvalues (resp., 66 s to compute all the
real H-eigenvalues). Our semidefinite relaxation methods are faster for computing real
tensor eigenvalues.

There also exist other type methods for solving polynomial systems. For instance,
the Homotopy continuation method [7] can be applied. This method typically can only
get one eigenvalue, instead of all, at each running. Its performance depends on the
choice of the starting point. To see this, we apply it to the tensor in Example 5.1. The
Z-eigenvalue 25.1 is obtained from the starting point (0.5, 0.5, 0.5); the Z-eigenvalue
23 is obtained from the starting point (8, 4, 0.5); no Z-eigenvalue is obtained from
the starting point (0, 0, 0). If we use different starting points (say, randomly generated
points), we might get different eigenvalues. However, this does not guarantee that all
the eigenvalues can be found. Moreover, even if all the eigenvalues are obtained, the
method cannot detect that no eigenvalues are missing in the computation.

6.4 Isolatedness of Z-eigenvalues

The isolatedness of Z-eigenvlaues can be verified by Lemma 2.1. It requires to check
whether the Jacobian matrix J (λ, u) of the function F(λ, x) in (2.6) is nonsingular or
not. A common practice is to compute the smallest singular value σmin of J (λ, u). If
σmin is clearly greater than zero (e.g., σmin > 10−3), then it is usually safe to claim the
nonsingularity of J (λ, u). However, if σmin is close to zero, then it may be hard to tell.
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This issue is related to the problem of evaluating the rank of a matrix numerically. This
is a classical question in numerical linear algebra. We refer to the book [8]. Moreover,
Lemma 3.5 can also be applied to check isolatedness. It does not require to determine
whether or not the Jacobian matrix J (λ, u) is nonsingular.
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