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Stochastic Analysis of Delayed Mobile
Offloading in Heterogeneous Networks

Huaming Wu and Katinka Wolter

Abstract—Mobile cloud offloading that migrates heavy computation from mobile devices to powerful cloud servers through
communication networks can alleviate the hardware limitations of mobile devices thus providing higher performance and saving energy.
Different applications usually give different relative importance to response time and energy consumption. If a delay-tolerant job is
deferred up to a given deadline, or until a fast and energy-efficient network becomes available, the transmission time will be extended,
which can save energy because a more energy-efficient communication channel and a less energy-restricted computation platform
may become available. However, if the reduced service time fails to cover the extra waiting time, this policy may not be competitive. In
this paper, we investigate two types of delayed offloading policies, the partial offloading model where jobs can leave from the slow
phase of the offloading process and be executed locally on the mobile device, and the full offloading model, where jobs can abandon
the WiFi Queue and be offloaded via the Cellular Queue. In both models, we minimize the Energy-Response time Weighted Product
(ERWP) metric. Not surprisingly, we find that jobs abandon the queue often when the availability of the WiFi network is low. In general,
for delay-sensitive applications the partial offloading model is preferred under a suitable reneging rate, while for delay-tolerant
applications the full offloading model shows very good results and outperforms the other offloading model when selecting a large
deadline. From the perspective of energy consumption, the full offloading model will always be best, even if the deadline must be
extremely long. Only if job response time is of high importance an optimal deadline to abort offloading in the partial offloading model or
the WiFi transmission in the full offloading model can be found. For reduction of the energy consumption it will always be better to wait
longer rather than compute locally or use the cellular network.

Index Terms—Mobile Cloud Computing, Mobile Offloading, Heterogeneous Networks, Energy-Performance Tradeoff, Queueing
Model.
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1 INTRODUCTION

B ESIDES light-weight Internet applications, there is an
increasing demand from mobile users for computation-

heavy and energy-hungry applications that are being de-
ployed to mobile devices. Running complex applications on
such devices is however challenging due to the strict con-
straints on their resources, e.g., the limited computational
capacity, battery lifetime and network connectivity. Offloa-
ding computation-intensive tasks from mobile devices to a
capable cloud server via wireless networks is an effective
way to alleviate a tussle between resource-constrained mo-
bile devices and resource-hungry mobile applications, and
thus boosting the device’s performance. Potential benefits
obtained from offloading include reducing the job response
time as well as decreasing the amount of energy needed to
process a job.

Mobile offloading is most beneficial for applications that
require heavy computation on a rather small amount of
data. More precisely, in this paper we consider applications
that upload considerably more data than they download.
Any image recognition application would be an example for
such an application, e.g., optical text recognition or object
recognition in images.
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Different types of applications usually give different
relative importance to both factors of response time and
energy consumption.

• Delay-Tolerant Applications: many mobile applications
(e.g., iCloud, social networking, mobile healthcare
and urban tomography) deal with video, audio, sen-
sor data, or access large databases on the Internet,
which are less sensitive to network delays. Partici-
patory sensing applications are a good example of
data-intensive yet delay-tolerant applications. The
collective sampling of sensor data acquired by a
number of sensor nodes creates a body of knowledge
on parameters such as personal resource consump-
tion, dietary habits and urban documentation [1].
Data is uploaded from a smartphone to a back-
end cloud server either through the cellular network
or any available WiFi network. Some of the sensor
information is not time-critical and its submission to
the server may be delayed until the device enters
an energy-efficient network [2]. Users can browse
or search the obtained archives through a website
at the server side. As a daily-life scenario when
traveling outside the normal network coverage area
(e.g., abroad, where the cellular contract is not valid)
a user may wish to trigger a job, in order not to
forget, but require the result only upon return to the
workplace. In general terms, for delay-tolerant appli-
cations, response time is less critical and optimizing
energy usage is more relevant.
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• Delay-Sensitive Applications: when running delay-
sensitive applications (e.g., face recognition, video
conferencing, vehicular communications, authentica-
tion) on mobile devices, mobile users desire a fast
response which is comparable to their normal cog-
nitive capabilities. Thus, for good user experience
the response time of cognitive applications should
be low. Task offloading can be exploited to use cog-
nitive applications ubiquitously by executing them
remotely on computing nodes. Fast response is a pri-
mary concern for these applications. The offloading
scheme in which cloud services are available after
short network latency (e.g., WiFi networks) can serve
such applications in a better way and lead to a low
response time.

Mobile users are easily subject to dynamically changing
network conditions due to their mobility, which makes it
hard to make good offloading decisions in mobile environ-
ments [3]. Mobile network environments have a great influ-
ence on the performance of offloading systems. Therefore,
taking a high-quality offloading decision requires a good
understanding of the network condition.

Mobile devices usually have multiple radio interfaces
for data transfer, such as 3G/4G and WiFi with different
availability, delay and energy cost. Thus, there are several
ways to offload tasks to the cloud, e.g., via a costly cellular
connection or via intermittently available WiFi [4]. By de-
laying offloading until WiFi becomes available, it is possible
to reduce the transmission time at the expense of some
extra waiting time. The reduced transmission time at a later
point in time directly translates to saving battery power of
the mobile device [5]. However, delayed offloading is still
a matter of debate, since it is not known to what extent
users would be willing to delay a transmission [6]. In this
paper, we try to give an overall recommendation of how
to balance the time and energy investment for different
types of scenarios, i.e. delay-tolerant and delay-sensitive
applications. We develop a theoretical framework to capture
the energy-performance tradeoff by using queueing models
with impatient jobs and service interruptions. The models
can be used to predict the average performance and energy
consumption of mobile offloading under a given network
environment deployment condition.

The main contributions of this paper are as follows:

• we propose two analytical queueing models for de-
layed mobile cloud offloading systems: the partial
offloading model and the full offloading model. A
non-delayed offloading model [7] is also introduced
and used for comparison.

• we develop an analytical framework for analyzing
queueing models with reneging and service inter-
ruptions. From our framework, we obtain closed-
form formulas for key performance metrics in the
delayed offloading system such as Energy-Response
time Weighted Product (ERWP), which combines the
advantages of other previously studied metrics.

• we aim at answering the following questions: (i)
Given a deadline, what are the expected response
time and expected energy consumption as a function
of network parameters and job arrival rate? (ii) How

should the deadline be optimally chosen in order to
achieve different energy-delay tradeoffs for specific
applications? (iii) Among different offloading mo-
dels, which one is best at achieving a performance
gain according to the ERWP metric?

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Section 3 describes
system models for the delayed offloading models as well
as the considered metrics. Sections 4 and 5 present the
mathematical models and their analysis for the partial and
the full offloading model. The partial offloading model
based on the ERWP metric is analyzed in Section 4. The
full offloading model is proposed and analyzed in Section
5. Section 6 evaluates metrics and models using numerical
examples based on real traces of mobile networks. The
paper concludes in Section 7.

2 RELATED WORK

This section discusses related work on offloading systems
to reduce job completion time, energy usage and a com-
bination of both, each in the respective subsection. The
issues of time and energy saving on mobile devices are
becoming increasingly relevant. Many research efforts have
been devoted to offloading computation to remote servers
in order to shorten execution time or save energy.

2.1 Reducing Job Completion Time
Mobile cloud offloading is sometimes implemented as a
two-step procedure where the cloud is reached via a close-
by cloudlet which is in turn connected to powerful cloud
servers. Satyanarayanan et al. [8] proposed a VM-based
cloudlet in mobile computing, to which a smartphone con-
nects over WLAN. The assumption is that connection to
the Cloud imposes higher latency and lower bandwidth
than the Cloudlet. In essence, cloudlets make use of mobile
devices simply as a thin-client to access local resources,
rather than using the mobile device’s resources directly and
offloading only when required.

A stochastic model for dynamic offloading has been
developed in [4] using various performance metrics and also
intermittently available access links. The mobile nature of
mobile devices and unstable connections of wireless links
affect the predictability of the performance of a pervasive
service running under the control of offloading systems.
Ou et al. [9] analyzed the performance of offloading sy-
stems in mobile wireless environments when considering
system failure and recovery. However, how to take offlo-
ading decisions was not considered. In [10] a framework
using estimated bandwidth to take offloading decisions was
investigated. The authors formulated decision problems for
computational offloading systems according to the band-
width prediction for the local and remote systems. The
assumption is that network reliability is not an issue, while
in a realistic scenario, the network may even not be available
at all.

2.2 Saving Energy
Mobile offloading systems have been built over the past
years for the purpose of reducing the energy consumption
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of mobile devices. MAUI [11] was a system that enables
energy-aware offloading of mobile code to the infrastruc-
ture. Its main aim was to optimize energy consumption of
a mobile device by estimating and trading off the energy
consumed by local processing vs. transmission of code and
data for remote execution. The system decided at runtime
which methods should be executed remotely as to save
most energy under the mobile device’s current connectivity
constraints.

Kumar et al. [12] argued that offloading could potentially
save energy for mobile users, but not all applications were
energy-efficient when migrated to the cloud. It depended
on whether the computational cost saved due to offloading
outperforms the extra communication cost. A large amount
of communication combined with a small amount of compu-
tation should preferably be performed locally on the mobile
device, while little communication for a large amount of
computation should preferably be executed remotely.

Some authors consider a response time constraint for the
application when partitioning application tasks for execu-
tion on mobile devices and cloud servers. This deadline
is an important issue for many interactive applications.
To save energy while satisfying a given application dead-
line, dynamic offloading algorithms were presented in [13],
[14]. They showed low complexity to solve the offloading
decision-making problem (i.e., to determine which software
components to execute remotely under mobile network
environments).

2.3 Saving Time and Energy Combined
Both concerns, job response time and energy consumption
have been addressed by several authors. CloneCloud [15]
used a combination of static analysis and dynamic profiling
to partition applications automatically at a fine granularity
while optimizing execution time and energy usage for a
target computation and communication environment. Ho-
wever, static application partitioning [16], [17] were not suit-
able in situations with heavily changing network condition.
Intermittent connectivity may exist due to heterogeneous
wireless environments, device mobility and cloud resource
unavailability. Unstable connections in mobile networks
have a great impact on the offloading decisions. High com-
munication latency and energy consumption can make local
execution more advantageous in certain circumstances.

Seamless offloading operation by switching between
several transmission technologies has been proposed in
[18]. They have examined the tradeoff between energy
consumption for WiFi search and transmission rate when
the WiFi network was only intermittently available. Energy-
efficient delayed network selection has been suggested in
[1], [19] to optimize the tradeoff between energy usage
and delay in data transmission by intentionally deferring
data transmission until the device meets an energy-efficient
network. Moreover, the use of “delayed offloading” has
been suggested in case no WiFi connection is available.
Then (some) traffic can be delayed up to a chosen deadline,
or until WiFi becomes available [20]. An online scheduling
policy for delayed mobile offloading was proposed in [21],
where the amount of offloaded data by using WiFi has been
maximised to the extent possible. The scheme would only
use cellular networks after expiry of a deadline.

This work is motivated by the above interesting efforts to
investigate the intermittent network connectivity problem
in a mobile cloud environment, aiming at balancing diffe-
rent objectives like minimum response time and minimum
energy consumption. We explicitly consider the mobile na-
ture of both user and application behavior and study how
delayed offloading can tackle these heterogeneity problems
by using a combined metric based on our previous work
[22], [23], [24].

3 SYSTEM MODELS

In this section, we define two different delayed offloading
models based on a network availability model and propose
a new metric to capture the energy-performance tradeoff.

3.1 The Network Model

Cellular WiFi

Delay High Low

Availability High Low

Energy-

Efficiency
Low High

Fig. 1. Comparison of WiFi and cellular networks

Figure 1 shows the assumptions we make. We assume
that the cellular interface has higher availability than WiFi
and can provide nearly ubiquitous coverage for mobile
devices in a wide area, but it has lower data transmission
rate and consumes more transmission energy than the WiFi
interface [19]. In other words, we assume that WiFi is much
faster and more energy-efficient than the cellular interface
for transmitting the same quantity of data. To facilitate the
analysis of the mobile offloading systems, we assume that
a cellular network is available to mobile users all the time
while the availability of a WiFi network depends on the
location. Mobile users move in and out of a WiFi coverage
area. These assumptions seem realistic enough in many
situations to constitute the basis of the work presented in
this paper.

ON

OFF
WiFi

Idle/ 
Cellular

TON TOFF
Fig. 2. The WiFi network availability model [25]

We model the time variation of the WiFi connection state
by the ON-OFF alternating renewal process

(
T

(i)
ON, T (i)

OFF

)
,

i ≥ 1, as shown in Fig. 2. The ON periods represent the
presence of the WiFi connectivity, while the OFF periods
denote the interruption of the WiFi connectivity. During the
latter periods data is either not transmitted (the interface
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is idle) or it is transmitted only through the cellular net-
work. The duration of each ON period T

(i)
ON, is assumed

to be an exponentially distributed random variable and
independent of the duration of other ON or OFF periods
[6]. Further, the WiFi availability ratio (AR) can be defined
as AR = E[TON]

E[TON]+E[TOFF]
.

3.2 The Delayed Offloading Models

According to the network availability model depicted in
Fig. 2, we define two types of delayed offloading models,
namely, the partial offloading model and the full offloading
model as follows. In delayed offloading, a deadline is as-
sociated with each data transfer and the data transfer is
resumed whenever the device reaches the coverage of WiFi
until the transfer is completed [5] or the deadline expires,
whichever comes first. If the data transfer does not finish
until the deadline expires, the task will either be executed
locally (partial offloading model) or a cellular network will
complete the data transfer (full offloading model).

• Partial Offloading Model: we employ a single
queue with two phases (fast: WiFi network and slow:
cellular network) to offload jobs to the cloud server.
When there is a WiFi connection available, all the
offloadable jobs are sent over the WiFi network;
otherwise, they are sent over the cellular interface
as the cellular network is always available. We set
a reneging deadline in the cellular network, if the
deadline expires before the job switched over to
some WiFi AP, then it is executed locally on the
mobile device rather than remotely in the cloud.
By doing this, we have partial jobs offloaded to the
cloud and the remaining ones processed locally.

• Full Offloading Model: when there is a WiFi con-
nection available, all the offloadable jobs are sent
over the WiFi network; otherwise, they can be de-
layed up to a given deadline, or until WiFi becomes
available [20]. If the deadline expires before the job
can be transmitted over some WiFi AP, then it is
offloaded through the cellular network. In this way,
we have all the offloadable jobs offloaded to the
cloud via the cellular or WiFi network.

We consider a queueing system for delayed offloading.
The mobile device, the cloud and the wireless networks
are represented as queueing nodes to capture the resource
contention and delay on the system. The mobile device
executes an application with offloadable jobs that can be
processed either locally on the processor of the mobile
device, or remotely in a cloud infrastructure through offlo-
ading. The mobile device, the cellular and WiFi connections
are modeled as M/M/1-FCFS queues, and the remote cloud
is modeled as an M/M/∞ queue, i.e., as a delay center [26].
We denote 1/µm and 1/µr the expected execution time of
jobs on the mobile device and the cloud, respectively. The
expected rates to transfer data to the cloud over the cellular
network and WiFi are µc and µw, respectively.

The delayed offloading models involve queueing with
reneging and service interruptions. In queueing, reneging
means that a job will leave the queue and join another queue

after the deadline expires. Service interruption literally me-
ans unwilling discontinuity of service in the queue, and this
models connection and disconnection periods of a mobile
device to WiFi networks in the system [27]. The essential dif-
ference between our delayed computation offloading model
and the delayed data offloading in [5] is that not only data
is transmitted to the cloud but the task itself is executed
remotely on the cloud server. Usually, the offloaded data
needs to be further analyzed or simple processed before it
can show up.

3.3 Metrics

In this section, we define the metrics which will be used to
evaluate and optimize the tradeoff between the job comple-
tion time and the energy usage.

3.3.1 ERWS

The Energy-Response time Weighted Sum (ERWS) metric is
a cost function defined as the weighted sum of the respective
expected values:

ERWS = ωE[E ] + (1− ω)E[T ], (1)

where E is used for expectation of a random variable, E[T ]
and E[E ] are expected response time and expected energy
consumption, respectively, and ω (ranging between 0 and
1) is a weighting parameter that represents the relative
significance of energy consumption and response time for
the mobile device. To focus on performance, ω should be
less than 0.5; to focus on energy consumption, ω should be
greater than 0.5. When ω is exactly 0.5, the focus is on both
increasing performance and reducing energy consumption.
The expectation will be determined by its estimate, the mean
value.

The ERWS metric has the advantage of being analytically
well tractable since the expectation is additive over time and
thus can be optimized via a Markov decision process [28].
From the view of minimization, this metric allows compa-
ring arbitrary offloading policies to the optimal offloading
policy. However, it has the disadvantage of being a linear
combination of two metrics on different scales.

3.3.2 ERP

The Energy-Response time Product (ERP) is widely accep-
ted as a suitable metric to capture the energy-performance
tradeoff and it is defined as:

ERP = E[E ] · E[T ]. (2)

Minimizing the ERP metric can be seen as maximizing the
‘performance-per-joule’, with performance being defined as
jobs per time unit [28].

While the ERWS metric implies that a reduction in
mean response time by one unit has the same value as the
reduction of the mean energy usage by one unit. In contrast,
the ERP metric being a product, does not combine two linear
functions that live on totally different scales [28]. In other
words, the ERP metric does not suffer from comparison of
different scales. However, since ERP is the product of two
mean values, it is a difficult metric to treat analytically.
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3.3.3 ERWP
To overcome the aforementioned disadvantages, we pro-
pose a new metric called Energy-Response time Weighted
Product (ERWP), which combines the strengths of ERWS
and ERP in that it handles metrics on different scales well
and is analytically tractable. The ERWP metric has been
introduced in [29], [30]. It is defined as:

ERWP = E[E ]ω · E[T ]1−ω. (3)

We can rewrite (3) as: ERWP = eω·ln(E[E])+(1−w)·ln(E[T ]),
which inherits the characteristics of the ERWS metric that
assigns different importance weights to energy consumption
and response time, and has the advantage of being analyti-
cally tractable since the logarithmic expectation is additive
over time. Meanwhile, the mean energy consumption and
mean response time have equal importance when ω = 0.5,
also in (3): ERWP =

√
E[E ] ∗ E[T ], which indicates that the

ERWP metric has the advantages of the ERP metric that is
insensitive to difference of scales.

4 THE PARTIAL OFFLOADING MODEL

In this section, we analyze the partial offloading model
with service reneging, which means that jobs give up upon
expiry of the deadline. We first formulate the analytical
model based on our network availability model, then we
use queueing analysis to derive the ERWP metric.

4.1 The Model

µ( f )

WiFiCellular

Remote

η

ξ

Offload

fOFF fON

Local

µr

λm µm , pm

λ

Fig. 3. The partial offloading model

Figure 3 depicts a delayed offloading model based on
the network availability model. We consider a modulated
M/M/1 queue in a two-phase (fast and slow) Markovian
random environment, with impatient jobs, who may abort
offloading to be processed locally. The jobs are offloaded
either via a cellular connection or a WiFi network to the
cloud. The single-server queueing system that oscillates
between two feasible phases is denoted by fON and fOFF,
meaning that the WiFi connection can be operational or
not. In the model the persistence of the system at any
phase is governed by a random mechanism [31]: if the
system operates in phase fON, it switches to phase fOFF after
random time of mean duration 1/ξ; if the system operates
in phase fOFF, it switches to the other phase after random
time of mean duration 1/η. We assume that offloading jobs
arrive at the system according to a Poisson process with rate

λ, and the modulating process f ∈ {fON, fOFF} determines
the service rates:

µ(f) =

{
µc, if f = fOFF
µw, if f = fON

. (4)

We assume that the mean job size is E[X], the trans-
mission speed of the fast phase (WiFi network) is sw with
service rate µw = sw/E[X], and its operating power is pw
when serving jobs and zero whenever idle. Similarly, the
corresponding speed for the slow phase (cellular network)
is sc with service rate µc = sc/E[X] (µc ≤ µw), and
operating power pc. When in the slow phase, jobs may
become impatient. A reneging deadline Td, is associated
with each job in this phase. That is, upon arrival each
job activates an individual timer which is exponentially
distributed with a reneging rate r. If the system does not
change its environment from the slow phase to the fast
phase before the deadline expires, the job will be removed
from the Offload Queue and is assumed to be executed locally
on the mobile device rather than being offloaded to the
cloud [32].

Figure 3 demonstrates that the delayed offloading model
consists of an Offload Queue (with two alternating phases of
cellular and WiFi), a Local Queue denoting the local proces-
sing on the mobile device and a Remote Queue representing
the remote processing on the cloud.

The Offload Queue alternates its service by means of
mutual resets according to the availability of WiFi, which
is governed by an interrupted Poisson Process (IPP) with
exponentially distributed ON-OFF periods. We model the
intermittent availability of WiFi hotspots as a FCFS queue
with occasional server break-down [4], either in the ON-
state where the WiFi network is processing the existing
jobs, or in the OFF-state during which jobs are served by
the cellular network (cellular connectivity is assumed to
be always available). However, when the job stays in the
cellular network for too long, it abandons the Offload Queue
and is then processed locally on the mobile device. If the
job in the Offload Queue is completely transmitted before
the assigned deadline has expired, we say that the job is
successfully offloaded. If offloading fails, the job leaves the
Offload Queue and join the Local Queue on the mobile device
for immediate local processing. We call such an event a
reneging event [27].

Since there is no waiting time before entering service,
the M/M/∞ queue of the cloud is occasionally referred to
as a delay (sometimes pure delay) station, the probability
distribution of the delay being that of the service time.

Especially, if we set the service rates µm and µr to ∞,
the mobile computation offloading model in Fig. 3 reduces
to mobile data offloading, i.e., there is no further execution
for the arrival job. Therefore, the queueing model in Fig. 3
encompasses both mobile computation offloading and mo-
bile data offloading.

4.2 Queueing Analysis
Given the previously stated assumptions, the partial offlo-
ading model can be modeled with a 2D Markov chain, as
shown in Fig. 4.

The states with cellular network are denoted {c, i}, and
the states with WiFi connectivity are denoted {w, i}. The
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w, 0 w, 1 w, i-1 w, i w, i+1

c, 0 c, 1 c, 2 c, i c, i+1

ξ ξ ξ ξ ξη ηηηη

µw

λ λ λλλ

λ λ λ λ λ

µw µwµwµw

µc + r µc + 2r µc + 3r µc + ir µc + (i +1)r

Fig. 4. The Markov chain for the partial offloading model

parameter i corresponds to the number of jobs in the sy-
stem (queueing and in service). During the WiFi phase, the
system depletes at rate µw and during the cellular phase,
the system serves at rate µc + i · r since any of the i queued
jobs can abandon the Offload Queue [20]. Writing the balance
equations for the cellular and WiFi phases gives:

(λ+ η)πc,0 = (µc + r)πc,1 + ξπw,0 (5a)
(λ+ η + µc + ir)πc,i = λπc,i−1 +

(
µc + (i+ 1)r

)
πc,i+1

+ξπw,i (i > 0) (5b)
(λ+ ξ)πw,0 = µwπw,1 + ηπc,0 (5c)

(λ+ ξ + µw)πw,i = λπw,i−1 + µwπw,i+1 + ηπc,i (i > 0) (5d)

The steady-state probability of finding the offloading
system in some region with WiFi unavailable (with only
cellular access) is πc = E[TOFF]

E[TON]+E[TOFF]
= ξ

η+ξ . Similarly, the
steady-state probability for the periods with WiFi available
is πw = E[TON]

E[TON]+E[TOFF]
= η

η+ξ , which equals to the availability
ratio AR.

The probability generating functions for both cellular
and WiFi states are defined as:

Gc(z) =
∞∑
i=0

πc,iz
i and Gw(z) =

∞∑
i=0

πw,iz
i, |z| ≤ 1. (6)

By multiplying each equation for i in (5c-5d) by zn,
respectively, summing over i and rearranging terms we
obtain [32]:

Gw(z)β(z) = ηzGc(z)− µw(1− z)πw,0,

where β(z) = (λz − µw)(1− z) + ξz. The roots z1, z2 of the
quadratic polynomial β(z) = −λ(z − z1)(z − z2) are

z1,2 =
λ+ µw + ξ ∓

√
(λ+ µw + ξ)2 − 4λµw
2λ

.

4.2.1 The General Case
We consider the partial offloading model as depicted in
Fig. 3 when assuming the reneging rate r 6= 0. According
to [32], we obtain:

πc,0 =
rSξκ2(1)

µc(ξ + η)(SV − TU)
, (7)

πw,0 = − rTκ2(1)

µw(ξ + η)(SV − TU)
, (8)

where we define S =
∫ z1
0

κ1(x)
β(x) dx, T =

∫ z1
0

κ1(x)
x dx, U =∫ 1

z1

κ2(x)
β(x) dx and V =

∫ 1
z1

κ2(x)
x dx. Accordingly, κ1(z) and

κ2(z) are represented as follows:

κ1(z) = e−
λz
r z

µc
r (z1 − z)

η
r
z1(z2−1)
z2−z1 (z2 − z)−

η
r
z2(z1−1)
z2−z1 , z ≤ z1,

κ2(z) = e−
λz
r z

µc
r (z − z1)

η
r
z1(z2−1)
z2−z1 (z2 − z)−

η
r
z2(z1−1)
z2−z1 , z ≥ z1.

By the definitions of κ1(z), κ2(z) and β(z), it follows
that T,U, V > 0 and S < 0. Therefore, πc,0 and πw,0 are
positive. One can show formally that the system is ergodic.
Intuitively, we see that the system is always stable since,
with any set of parameters λ ≥ 0, µc ≥ 0, µw > 0, ξ > 0, η >
0 and r > 0. The abandonment process, whose overall rate
increases with the number of jobs, prevents the explosion of
the queue length [32]. Alternatively, the system is stable if
and only if πc,0 and πw,0 are positive, which always holds
for the above set of parameters.

Let µ be defined as: µ = πc · µc + πw · µw. According to
[32], we obtain:

E[Nc] =
λ− µ+ µcπc,0 + µwπw,0

r
, (9)

E[Nw] =
η(λ− µ) + r(λ− µw)πw + ηµcπc,0 + µw(η + r)πw,0

ξr
.

(10)
As shown in Fig. 4, the expected number of jobs served

per unit of time in the slow phase and fast phase are µc(πc−
πc,0) and µw(πw − πw,0), respectively [33]. Therefore, the
rate of abandonment due to impatience in the slow phase,
λaband, is given by:

λaband = λ− µc(πc − πc,0)− µw(πw − πw,0)
= λ− µ+ µcπc,0 + µwπw,0

= r · E[Nc], (11)

where the abandonment rate is proportional to the reneging
rate and the mean number of jobs in the cellular phase.

The rate at which jobs are executed locally on the mobile
device must be equal to the abandonment rate, i.e., λm =
λaband. The probability that an arbitrary job arriving at the
Offload Queue will leave and join the Local Queue, i.e., it will
be executed locally and will never be offloaded again, is
defined as:

Pr{abandon} = λaband

λ
=
λ− µ+ µcπc,0 + µwπw,0

λ
, (12)

where Pr denotes the probability operation.
We recollect that the utilization of the service station is

represented by: ρ = 1− (πc,0 + πw,0).

4.2.2 An Extreme Case

µ( f )

WiFiCellular

Remote

η

ξ

Offload

fOFF fON

µr
λ

Fig. 5. The non-delayed offloading model

The partial offloading model in Fig. 3 will reduce to the
non-delayed offloading model as depicted in Fig. 5 when
r → 0. Since in this case the reneging rate is zero, there
will be no Local Queue in this model. When the network is
available, all jobs are offloaded immediately no matter what
the network quality is. Since also the channel with poor
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quality is used, this offloading model may waste energy [5]
and it is analyzed in comparison with the delayed offloading
models.

After solving the equations of (5) when setting r = 0, we
have [34]:

g(z)Gc(z) = πw,0ξµwz+πc,0µc
[
ξz+λz(1−z)−µw(1−z)

]
,

where g(z) = λ2z3 − λ(η + ξ + λ + µc + µw)z
2 + (ηµw +

ξµc + µcµw + λ(µc + µw))z − µcµw, and it is proven that
g(z) has only one root z0 in the interval (0, 1).

After some algebraic manipulations, we obtain:

πc,0 =
ξ(µ− λ)z0

µc(1− z0)(µw − λz0)
, (13)

πw,0 =
η(µ− λ)z0

µw(1− z0)(µc − λz0)
. (14)

Once the values of πc,0 and πw,0 have been established,
the probability generating functions can be calculated as:

Gc(z) =
ξ(µ− λ)z + πc,0µc(1− z)(λz − µw)

g(z)
, (15)

Gw(z) =
η(µ− λ)z + πw,0µw(1− z)(λz − µw)

g(z)
. (16)

By using E[Ni] =
∑∞
n=0 nπi,n = dGi(z)/dz|z=1, we get

the average number of jobs in the system [34]:

E[N ] = E[Nc] + E[Nw]

=
λ

µ− λ
+
µc(µw − λ)πc,0 + µw(µc − λ)πw,0

(ξ + η)(µ− λ)

− (µc − λ)(µw − λ)
(ξ + η)(µ− λ)

. (17)

4.3 Metric-Based Analysis

The total cost, in terms of energy or response time for
processing all jobs is composed of the remote cost (sending
some offloadable jobs to the cloud, idly waiting for the cloud
to complete them and sending the computation result back
to the mobile device), and the local cost (processing the
remaining jobs locally on the mobile device). Since the delay
caused by the transmission in the uplink usually dominates
the transmission cost we neglect the cost in the downlink
here.

4.3.1 The Mean Response Time
By Little’s Law, E[N ] = λE[T ], the mean response time can
be calculated as:

E[T ] = E
[
E[Ti]

]
=

∑
i∈{c,w,m,r}

λi
λ
E[Ti]

=
1

λ

∑
i∈{c,w,m,r}

E[Ni], (18)

where i ∈ {c, w,m, r} represents the cellular phase, the WiFi
phase, the mobile device and the remote cloud, respectively.
E[Nc] and E[Nw] are the average number of jobs in the
cellular network and WiFi network as obtained in (9) and
(10), respectively.

Since the arrival rate to the Local Queue equals the
abandonment rate of the Offload Queue for local processing
we have λm = r · E[Nc]. For an ordinary M/M/1-FCFS
queue, the average number of jobs on the mobile device is
given by:

E[Nm] =
ρm

1− ρm
. (19)

where ρm = λm/µm is the utilization.
Since there is no waiting time before entering into remote

service in the cloud, for an M/M/∞ queue, the average
number of jobs in the Remote Queue can be calculated as:

E[Nr] =
λr
µr
, (20)

where λr = λ− λm is the arrival rate to the Remote Queue.

4.3.2 The Mean Energy Consumption
We assume that each server operates at a constant power pi,(
i ∈ {c, w,m}

)
whenever it is busy, i.e., the mobile device

consumes energy only when there are jobs in the system.
Since E[P ] = λE[E ] is the mean power consumption, we
can calculate the mean energy consumption for the partial
offloading model can be calculated as follows:

E[E ] = E
[
E[Ei]

]
=

∑
i∈{c,w,m}

λi
λ
E[Ei]

=
1

λ

∑
i∈{c,w,m}

E[Pi]. (21)

The application jobs that are remotely executed om the
cloud server do not consume CPU energy on the local
device.

For i ∈ {c, w,m}, the corresponding average power
consumption can be calculated as:

E[Pi] = pi · Pr{Ni > 0} = pi · ρi. (22)

Since the utilization of the queue is the probability that the
server is busy, we have Pr{Ni > 0} = ρi, i.e., the energy
cost is only incurred during the fraction of the time the
server is busy.

The energy consumed due to local execution depends on
the processing speed of the mobile device. Since the service
on the mobile device is always available, we have:

E[Pm] = pm · Pr{Nm > 0} = pm · ρm. (23)

The mean energy consumption due to offloading via cellular
or WiFi network depends on the transmission power and
speed. We have:

E[Pc] = pc · Pr{Nc > 0} = pc · ρc, (24)
E[Pw] = pw · Pr{Nw > 0} = pw · ρw, (25)

where ρc and ρw are the utilizations of the cellular and
WiFi networks, which are equal to the probability that the
corresponding network is busy. According to Fig. 4, they can
be calculated separately as follows:

ρc = πc − πc,0, (26)
ρw = πw − πw,0. (27)
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4.3.3 The ERWP Metric
The energy-response time-weighted-product combines
both, an energy metric and a performance metric in their
weighted product. Our objective is to minimise the mean
energy consumption and the mean response time. Further,
by substituting (18) and (21) into (3), we can formulate the
explicit expressions of the ERWP metric for the delayed
offloading model:

r∗ = arg min
r

ERWP , (28)

we seek the reneging rate r∗ such that ERWP is minimised.
Remember, that reneging means that an impatient job gives
up an offloading attempt and switches to local computation.

5 THE FULL OFFLOADING MODEL

In this section, we discuss the full offloading model in which
all jobs are offloaded. If possible jobs are offloaded via the
WiFi connection, otherwise the cellular network is used.

5.1 The Model
As depicted in Fig. 6, the full offloading model consists
of two coupled queues used for offloading from a mobile
device, called WiFi Queue and Cellular Queue. Both queues
are served by a FIFO (first-in-first-out) discipline. All jobs
arriving to the system are by default sent to the WiFi inter-
face for offloading. When a job is offloaded to the cloud via
the WiFi network, there is queueing due to the not always
sufficient transmission speed of the WiFi link. We model the
intermittent availability of WiFi hotspots as a FCFS queue
with occasional server break-down. The server is either in
the ON-state processing the existing jobs, or in the OFF-
state during which no job receives service. We assume that
jobs will abandon the queue during periods without WiFi
connectivity.

WiFi

Cellular

Remote

ONOFF
η

ξ TransmittingUnconnected

µc , pc

µw , pw

µr

λ

λc

Fig. 6. The full offloading model

We assign a reneging deadline to each job. The deadline
is drawn from an exponential distribution. Jobs are served
in the FCFS order depending on their remaining time until
expiry of the deadline (either while queued or while at the
head of the queue, but waiting for the WiFi interface). When
the server of the WiFi queue is in the OFF-state, jobs may be-
come impatient. That is, each job, upon arrival, activates an
individual timer, exponentially distributed with a reneging
rate r. If the network does not change its environment from
the OFF-state to the ON-state before the deadline expires,
the job abandons the WiFi Queue to be offloaded via a
cellular network [20] instead. If the job in the WiFi Queue is

completely transmitted through the WiFi network before the
assigned deadline has expired, we say that the job has been
successfully offloaded. If offloading fails, the job leaves the
WiFi Queue and joins the Cellular Queue in the mobile device
for immediate transmission through the cellular network.
We call such an event a reneging event.

When the job is offloaded to the cloud via a cellular
network, there is queueing due to the not always suffi-
cient transmission speed of the cellular link. Costs in terms
of transmission delays (queueing and actual transmission
time) and transmission energy consumption incur. Some
degree of service is always available since the cellular con-
nection always exists.

The Remote Queue is a pure delay station at which jobs
spend an exponentially distributed amount of time with
mean equal to 1/µr time units.

5.2 Queueing Analysis
The WiFi Queue refers to offloading jobs from the mobile
device to the cloud via a WLAN network, which is modeled
as an M/M/1-FCFS queue with intermittently available
service. When a failed server recovers, it continues to serve
the job whose service has been interrupted, i.e., the work
already completed is not lost (cf. data transfers with resume)
[4]. We make the common and not too unrealistic assump-
tion that the service fails from time to time and resumes
its operation after a random interval. The Markov chain for
the WiFi Queue is depicted in Fig. 7, which is equivalent to
assuming that µc = 0, πON = πw and πOFF = πc in Fig. 4.

ON, 0 ON, 1 ON, 2 ON, i ON, i+1

OFF, 0 OFF, 1 OFF, 2 OFF, i OFF, i+1

ξ ξ ξ ξ ξη ηηηη
2r 3rr

λ λ

λ λ λ λ

λ λ λ

λ

µw µw µw µw µw

(i+1)rir

Fig. 7. The 2D Markov chain for the WiFi queue

The states with WiFi connectivity are denoted {ON, i},
and the states without WiFi connectivity are denoted
{OFF, i}. During the ON-state, the system serves at rate µw
and during the OFF-state, it serves at rate i · r since any of
the i queued jobs can abandon the WiFi Queue [20]. Writing
the balance equations for this chain gives:

(λ+ η)πOFF,0 = ξπON,0 + rπOFF,1

(λ+ η + ir)πOFF,i = λπ1,i−1 + (i+ 1)rπOFF,i+1 + ξπON,i

(λ+ ξ)πON,0 = ηπOFF,0 + µwπOFF,1

(λ+ ξ + µw)πON,i = λπON,i−1 + µwπON,i+1 + ηπOFF,i

After substituting µc = 0 into κ1(z) and κ2(z), yields:

κ1(z) = e−
λz
r (z1 − z)

η
r
z1(z2−1)
z2−z1 (z2 − z)−

η
r
z2(z1−1)
z2−z1 , z ≤ z1,

κ2(z) = e−
λz
r (z − z1)

η
r
z1(z2−1)
z2−z1 (z2 − z)−

η
r
z2(z1−1)
z2−z1 , z ≥ z1.

According to [25], we obtain:

πOFF,0 = − Sξκ2(1)

(ξ + η)Uκ1(0)
, (29)

πON,0 =
rκ2(1)

µw(ξ + η)U
. (30)
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We further have µ = πc · µc + πw · µw = πONµw. After
substituting the above expressions in (9) and (10), we derive
the mean number of jobs in WiFi Queue as:

E[NOFF] =
λ− µw(πON − πON,0)

r
, (31)

E[NON] =
ηλ− µw(η + r)(πON − πON,0) + λrπON

ξr
. (32)

Therefore, the average number of jobs in the WiFi Queue can
be calculated as:

E[Nw] = E[NOFF] + E[NON]. (33)

In Fig. 7 the expected number of jobs served per unit of
time in the WiFi Queue is µw(πON − πON,0). Therefore, the
rate of abandonment due to impatience in the OFF periods,
λaband, is given by:

λaband = λ− µw(πON − πON,0) = r · E[NOFF]. (34)

where the abandonment rate is proportional to the reneging
rate and the mean number of jobs in the queue during the
OFF-state.

The rate of jobs sent to the cellular network λc must
be equal to the abandonment rate, i.e., λc = λaband. The
probability that an arbitrary job arriving to the WiFi Queue
will abandon it, i.e., it will be offloaded over a Cellular
Queue, is defined as:

Pr{renege} = λaband

λ
=
λ− µw(πON − πON,0)

λ
. (35)

5.3 Metric-Based Analysis
In this subsection we will derive expressions in the full
offloading model for our metrics of interest, the mean re-
sponse time, the mean energy consumption and the tradeoff
metric based on the former two, the energy-response time-
weighted product.

5.3.1 Mean Response Time
By Little’s Law, E[N ] = λE[T ], the mean response time can
be calculated as:

E[T ] = E
[
E[Ti]

]
=

∑
i∈{c,w,r}

λi
λ
E[Ti]

=
1

λ

∑
i∈{c,w,r}

E[Ni], (36)

where E[Nw] is the average number of jobs in the WiFi Queue
as obtained in (33).

The Cellular Queue refers to offloading jobs from the
mobile device to the cloud via a cellular network, which
is modeled as an M/M/1-FCFS queue. Since the arrival rate
to the Cellular Queue equals to the abandonment rate of the
WiFi Queue, i.e., λc = r · E[NOFF]. The average number of
jobs in this queue is given by:

E[Nc] =
ρc

1− ρc
, (37)

where ρc = λc/µc is the probability that the Cellular Queue
is busy.

Since all the jobs are offloaded to the remote server in the
cloud, for an M/M/∞ queue the average number of jobs on
the cloud server can be calculated as:

E[Nr] =
λ

µr
. (38)

5.3.2 Mean Energy Consumption
The mean energy consumption can be calculated as:

E[E ] = E
[
E[Ei|i]

]
=

∑
i∈{w,c}

1

λ
E[Pi]

=
1

λ

∑
i∈{w,c}

pi · Pr{Ni > 0}

=
1

λ

∑
i∈{w,c}

pi · ρi, (39)

where ρw is the fraction of time that WiFi is available to
process jobs, and it can be calculated as:

ρw = πON − πON,0, (40)

as the recovery rate η → ∞, the availability of WiFi πON =
AR = η

ξ+η tends to be 1.

5.3.3 ERWP Metric
In our analysis we wish to optimize the ERWP metric.
By substituting (36) and (39) into (3), we can formulate
the optimization of the ERWP metric for the offloading
assignment as: r∗ = arg min

r
ERWP.

6 PERFORMANCE EVALUATION

In this section, we compare the analytical results by using
the proposed delayed offloading models according to a
realistic offloading scenario. In order to obtain realistic re-
sults we estimate model parameters from experiments. The
offloading process includes a communication model and a
remote execution model. We will conduct some experiments
in order to use realistic communication parameters in our
models.

6.1 Mobile Network Traces

The data transmission rate in real wireless networks is
mostly not constant over time. It is affected by the changing
signal quality and the presence of other users. We collect real
network traces in mobile environments by using network
and energy profilers. Those traces are then fed into the
offloading model.

6.1.1 Network Profiler
A network profiler collects information about wireless con-
nection status and available bandwidth. It measures the
network characteristics at initialization, and continuously
monitors environmental changes. Network throughput can
be obtained by measuring the time duration when sending
a certain amount of data as in [15]. Due to the mobile nature,
the status of a wireless connection could change frequently
(e.g., the user moves to other location). Fresh information
about a wireless connection is critical for the optimizer to
make correct offloading decisions.

The profiler tracks several parameters for the WiFi and
3G interfaces, including the number of packets transmitted
and received per second, and the receiving and transmitting
data rate [35]. These measurements enable a better estimate
of the currently achieved network performance.
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TABLE 1
Mobile Device Specifications

Device CPU Memory Communication Method Technology
WiFi IEEE 802.11g

Xiaomi Redmi 2 Quad-core 2.1 GHz Cortex-A57 1GB RAM 3G HSPAP/HSUPA
4G LTE

WiFi IEEE 802.11g
Samsung Galaxy S6 Quad-core 1.2 GHz Snapdragon 410 3GB RAM 3G HSPAP/HSUPA

4G LTE
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(a) Xiaomi Redmi 2 (indoor)
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(c) Xiaomi Redmi 2 (outdoor)
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(d) Samsung Galaxy S6 (outdoor)

Fig. 8. The downlink and uplink bandwidth of WiFi in indoor and outdoor (walk) environments

Trials
0 100 200 300 400 500 600 700 800 900 1000

N
e

tw
o

rk
 B

a
n

d
w

id
th

 (
M

B
/s

)

0

1

2

3

4

5

6

7

8

Downlink
Uplink

Mean[RTT]=68.62ms

    Var[RTT]=302.85

(a) 3G with Samsung Galaxy S6
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Fig. 9. The downlink and uplink bandwidth of cellular networks in mobile (walk) environments
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We use Speedtest1 to measure the mobile network band-
width. Actual devices (see Table 1) are applied in a mobile
cloud environment with various mobile communication
networks. Here, we measure wireless bandwidth statistics
under the representative scenarios as shown in Table 2.
Specifically, during one week in May 2015 we stayed inside
some buildings or randomly walked around our campus,
carrying two smartphones (Xiaomi Redmi 2 and Samsung
Galaxy S6) equipped with WiFi and cellular interfaces.
During this period the data has been sampled.

The measured mobile network traces are depicted in
Figs. 8-9. We find that the bandwidth of both WiFi and
cellular networks (3G and LTE) vary considerably over time
and are highly unpredictable. Indoor WiFi, which has a
good coverage, is stable and fast. But even in the same sce-
nario, different mobile devices may record different levels
of transmission speed. For example, the Samsung S6 has
much higher bandwidth than the Xiaomi Redmi 2 in the
indoor environment. This is because the two devices contain
different hardware and software. The mobility of users has
a significant impact on the network connection bandwidth
quality. Outdoor WiFi wireless networks experience varying
signal strength and suffer from frequent intermittent con-
nectivities which make them unavailable from time to time.
On the contrary, cellular networks are much more stable and
also provide near-ubiquitous connectivity. Further, cellular
connections can suffer from high latencies or round-trip
time (RTT) and slow data transfers when compared with
WiFi. We notice in general that the bandwidth of the down-
link is higher at most times in most settings, sometimes by
a considerable margin.

6.1.2 Energy Profiler

There are two ways to estimate the energy consumption,
namely, software and hardware monitors. Some works [11],
[36] used a power meter attached to the smartphone’s
battery to build an energy profile. Power Monitor (e.g.,
Monsoon monitor) is a device that measures energy con-
sumption when data is transmitted from the mobile device
to the cloud server by supplying a certain level of power
to the mobile device. We use PowerTutor2 to measure the
power consumption of the applications. Although Power-
Tutor does not give as accurate results as a hardware power
monitor, the results are still reasonable and provide some
insight. PowerTutor provides detailed energy consumption
information for each hardware component.

In Fig. 10 both energy consumption and transmission
time increase in proportion to the transferred file sizes.
When the same volume of data was transmitted, WiFi has
relatively lower energy consumption than 3G. Moreover,
the device’s energy consumption via each communication
network is proportional to its data transmission time.

1. A free connection analysis tool, which shows real-time download
and upload graphs, stores results both locally and on the Internet for
sharing, http://www.speedtest.net/

2. PowerTutor is an application for Android phones that
provides accurate, real-time power consumption estimates for
power-intensive hardware components, http://ziyang.eecs.umich.
edu/projects/powertutor/

TABLE 2
Network Trace Data Sampling

Scene Place Mobility
Office, Library, Classroom, Kitchen,

Indoor (Static) Washing Room, Meeting Room, Low
Student Cafeteria, Laboratory

Outdoor (Dynamic) Walk around the campus Medium

File size
10KB 100KB 500KB 1MB 5MB
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Fig. 10. The energy cost and transmission time with Xiaomi Redmi 2

6.2 Numerical Analysis

In this section, we will first derive the needed parameters
from our experimental measurement results, and then we
will analyze the models using those parameters.

Different wireless network interfaces vary in many ways,
which we have to capture in simplified form in just a few
parameters. According to the mobile data traces collected
above, we consider here a simple scenario where the trans-
mission rate of the cellular network is lower than that
of WiFi, i.e., sc < sw and the power consumption when
transmitting jobs via the cellular link is higher than when
using the WiFi link, i.e., pc > pw. Using measurements
from real traces in [5], the average data rates of the cellular
and WiFi networks are set to sc = 200 Kbps and sw = 2
Mbps, respectively. The average duration of WiFi availabi-
lity period is 52 min (ξ = 1/52 min−1), while the average
period duration with only cellular network coverage is 25.4
min (η = 1/25.4 min−1). The availability ratio is thus 67%.
The mean job size is assumed to be 10 MB. According to
the power models developed in [37], we set the power
coefficients to pc = 2.5 W, pw = 0.7 W and pm = 2 W,
respectively. In addition, suppose that the total job arrival
rate is λ = 0.5 packet/min, the mobile service rate is
µm = 0.2 and the cloud service rate is µr = 1.

We first analyze the probability of reneging for the two
delayed offloading models. An availability ratio of 11% has
been reported in [38]. Fig. 11 shows that as the availability
ratio (AR) of the WiFi network increases, the fraction of jobs
that abandon the Offload Queue (for the partial offloading
model, refer to Fig. 11(a)) or the WiFi Queue (for the full
offloading model, refer to Fig. 11(b)) declines rapidly. Howe-
ver, the full offloading model has much higher reneging (of-
fload abandonment) probability than the partial offloading
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(b) Full offloading model

Fig. 11. The reneging probabilities for the delayed offloading models
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Fig. 12. Mean response time and energy consumption of the offloading models under different deadlines
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Fig. 14. Mean response time and energy consumption of the offloading models under different arrival rates

model under the same deadline Td. This can be explained
by the fact that the partial offloading model can use the
cellular network to transmit data and thus the number of
jobs waiting in the Offload Queue is reduced. On the other
hand, as the reneging deadline increases from 1 h to 2 h, jobs
have a higher chance to be offloaded via the WiFi network,
and therefore the reneging probability decreases for lower
arrival rates. However, at high arrival rates, the reneging
probability stays the same irrespective of the deadline.

The mean response time includes the queueing as well
as the service time. From Fig. 12(a), it can be seen that the
partial offloading model has the lowest average response
time since it makes full use of the slow phase of the cellular
network while WiFi is unavailable. For the lower deadlines
(Td < 40 min), the mean response time decreases as the
deadline increases since jobs with higher deadlines have a
better chance to transmit over the fast WiFi network, leading
to shorter response time. However, the mean response time
increases for higher deadlines, since jobs with lower dead-
lines leave the queue earlier, leading to smaller queueing
delays. From Fig. 12(b), we can observe that when the
reneging deadline is small, the non-delayed offloading mo-
del achieves the lowest mean energy consumption among
the three models, but as the deadline increases, the full
offloading model is much better. This is due to the fact that
the WiFi network is much faster and more energy-efficient
than the cellular network. The reduced service time can lead
to lower energy consumption on the mobile device.

Please note that the inverse reneging rate corresponds to
the mean deadline. Therefore the minimum in Fig. 12(a) for
a deadline of ≈ 40 corresponds to the minimum ERWP in
Fig. 13(a) at a reneging rate of 0.025.

Different applications usually assign different impor-
tance to the relative energy usage and performance. We use
the ERWP metric to compare the three offloading models
according to their energy-performance tradeoff. It can be
observed from Fig. 13(a) that when ω is small, the partial
offloading model can achieve the smallest ERWP value by
optimally choosing the reneging rate r. This indicates that
when considering response time more important (for delay-

sensitive applications), it is better to use the partial offloa-
ding model. Otherwise, when considering energy consump-
tion more important than response time (for delay-tolerance
applications), the full offloading model should be preferred.
The latter translates the reduced transmission time from the
fast WiFi network into lower usage of battery power for the
mobile device. As shown in Fig. 13(b), when the weighting
parameter ω is small, as the arrival rate of the offloadable
jobs λ increases, all the three offloading models perform
worse. However, the non-delayed offloading model is more
sensitive to the job arrival rates. The partial offloading mo-
del can always achieve the lowest ERWP value. This means
that when considering response time more important, it
is better to use the partial offloading model. Otherwise,
when considering energy consumption more important than
response time, the full offloading model should be preferred
at low job arrival rate λ. While at higher arrival rate, the
non-delayed offloading model performs better according to
the ERWP metric.

We then fix the reneging deadline to 2 h and compare
the mean response time and energy consumption under
different values of the job arrival rate λ. As shown in
Fig. 14(a), the mean response time increases with the incre-
ase of λ due to the queueing effects. The partial offloading
model performs much better than the other two models
since it fully uses the unavailability periods of WiFi by
offloading jobs over a cellular network. This in turn leads
to high energy consumption as shown in Fig. 14(b). The
full offloading model is much more energy-efficient than the
non-delayed offloading model at low arrival rate λ, while at
high λ, the non-delayed offloading model can save much
more energy. This can be drawn from Fig. 11(b)) since as
λ increases, more jobs are abandoned from the WiFi Queue.
Those jobs are then offloaded via the costly cellular network,
which result in higher energy consumption.

6.3 Offloading Experiments

To confirm the insights we gained from analyzing the mo-
dels we have run experiments using different deadlines
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and different connectivity scenarios. For the experiments we
chose a real-world setup which consisted of a predefined
route during which we followed a predefined sequence of
file uploads with specified file sizes. We conducted these
experiments on a Google Nexus 5 device and had multiple
runs where each run used a different deadline. The objective
was to measure the upload performance and energy usage
for different file sizes under changing circumstances regar-
ding WiFi coverage using varying deadlines.

Fig. 15. The walking route around FUB campus (red line: WiFi unavaila-
ble, green line: WiFi available)

The walking route can be seen in Fig. 15, the route
is marked with different colors showing WiFi availability,
where green sections indicate that WiFi was available and
red sections show that no WiFi was available. The positions
at which the next file upload was issued are shown using
numbers. The corresponding scheduled files are as follows:
50 MB, 1 MB, 10 MB, 1 MB, 10 MB, 50 MB. The length of
the route was 5km and with an average walking speed of
5.5 km/h, it had a duration of 55 min. We used several test
runs with different delays: no delay, 30 sec, and 30 min.

Fig. 16. Capacity discharge over time for different executions

Figure 16 shows the capacity discharge over time for
different executions. This is the major performance evalu-
ation metric, as the main goal of delayed offloading is to
reduce the energy consumption. The x-axis shows the time

in seconds relative to the start of the test. The normalized
capacity discharge is shown on the y-axis in percent. On
top of the diagram, the uploaded files are shown with
their corresponding file size as well as the WiFi availability
(blue=available; red=unavailable). This is a rather undistur-
bed test run that shows a decreasing energy consumption
for increasing deadlines very well. Taking the case of the
30 sec deadline as an example, there is an obvious drop in
battery capacity after 30 sec for the first upload of the 10
MB file, which clearly shows the high energy consumption
of the 3G interface.

7 CONCLUSIONS

In this paper, we have developed analytical queueing mo-
dels for delayed mobile cloud offloading to leverage the
complementary strength of WiFi and cellular networks by
choosing heterogeneous wireless interfaces for offloading.
We have carried out optimality analysis of the energy-
performance tradeoff for mobile cloud offloading systems
based on the ERWP metric. This metric captures both,
energy and performance characteristics. Our analysis even
included intermittently available access links.

We find that when the availability ratio (AR) of the
WiFi network is relatively low, the percentage of jobs
that abandon the queue is very high. We can optimally
choose the reneging deadline to achieve different energy-
performance tradeoffs by optimizing the ERWP metric. For
delay-sensitive applications, the partial offloading model is
preferred when setting an intermediate deadline, while for
delay-tolerant applications, the full offloading model shows
very good results and outperforms the other offloading
models when using a large deadline. In general one can
say that the partial offloading policy is faster, while the full
policy uses less energy.

When optimising the energy consumption the full of-
floading model will always be best, even if the deadline
must be extremely long. Only if job response time is of high
importance reasonable results for the tradeoff, captured in
the ERWP metric, can be obtained. Then an optimal deadline
to abort offloading in the partial offloading model or the
WiFi transmission in the full offloading model can be found.
For reduction of the energy consumption it will always be
better to wait longer rather than compute locally or use
the cellular network. The proposed queueing models can be
used to describe complex and realistic offloading systems.
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[4] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the Markov decision processes,” in World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015 IEEE
16th International Symposium on a, pp. 1–9, IEEE, 2015.



15

[5] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
How much can WiFi deliver?,” Networking, IEEE/ACM Transactions
on, vol. 21, no. 2, pp. 536–550, 2013.

[6] F. Mehmeti and T. Spyropoulos, “Performance analysis of “on-the-
spot” mobile data offloading,” in Global Communications Conference
(GLOBECOM), 2013 IEEE, pp. 1577–1583, IEEE, 2013.

[7] F. Rebecchi, M. D. De Amorim, V. Conan, A. Passarella, R. Bruno,
and M. Conti, “Data offloading techniques in cellular networks: A
survey,” Communications Surveys and Tutorials, IEEE Communicati-
ons Society, vol. 17, no. 2, pp. 580–603, 2015.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” Pervasive Compu-
ting, IEEE, vol. 8, no. 4, pp. 14–23, 2009.

[9] S. Ou, K. Yang, A. Liotta, and L. Hu, “Performance analysis of
offloading systems in mobile wireless environments,” in Commu-
nications, 2007. ICC’07. IEEE International Conference on, pp. 1821–
1826, IEEE, 2007.

[10] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth
data to make computation offloading decisions,” in Parallel and
Distributed Processing (IPDPS), 2008 IEEE International Symposium
on, pp. 1–8, IEEE, 2008.

[11] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proceedings of the 8th international conference
on Mobile systems, applications, and services, pp. 49–62, ACM, 2010.

[12] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?,” Computer, vol. 43, no. 4,
pp. 51–56, 2010.

[13] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading al-
gorithm for mobile computing,” Wireless Communications, IEEE
Transactions on, vol. 11, no. 6, pp. 1991–1995, 2012.

[14] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling
policy for collaborative execution in mobile cloud computing,” in
INFOCOM, 2013 Proceedings IEEE, pp. 190–194, IEEE, 2013.

[15] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clone-
cloud: elastic execution between mobile device and cloud,” in
Proceedings of the sixth conference on Computer systems, pp. 301–314,
ACM, 2011.

[16] L. Wang and M. Franz, “Automatic partitioning of object-oriented
programs for resource-constrained mobile devices with multiple
distribution objectives,” in Parallel and Distributed Systems, 2008.
ICPADS’08. 14th IEEE International Conference on, pp. 369–376,
IEEE, 2008.

[17] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng, “Challenges on
wireless heterogeneous networks for mobile cloud computing,”
Wireless Communications, IEEE, vol. 20, no. 3, pp. 34–44, 2013.

[18] A. Rahmati and L. Zhong, “Context-for-wireless: context-sensitive
energy-efficient wireless data transfer,” in Proceedings of the 5th
international conference on Mobile systems, applications and services,
pp. 165–178, ACM, 2007.

[19] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “eTime:
energy-efficient transmission between cloud and mobile devices,”
in INFOCOM, 2013 Proceedings IEEE, pp. 195–199, IEEE, 2013.

[20] F. Mehmeti and T. Spyropoulos, “Is it worth to be patient? Analysis
and optimization of delayed mobile data offloading,” in INFO-
COM, 2014 Proceedings IEEE, pp. 2364–2372, IEEE, 2014.

[21] H. Deng and I.-H. Hou, “Online scheduling for delayed mobile
offloading,” in 2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 1867–1875, IEEE, 2015.

[22] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance
improvement and energy saving in mobile cloud offloading sys-
tems,” in Communications Workshops (ICC), 2013 IEEE International
Conference on, pp. 728–732, IEEE, 2013.

[23] H. Wu and K. Wolter, “Dynamic transmission scheduling and link
selection in mobile cloud computing,” in Analytical and Stochastic
Modeling Techniques and Applications, pp. 61–79, Springer, 2014.

[24] H. Wu and K. Wolter, “Tradeoff analysis for mobile cloud offloa-
ding based on an additive energy-performance metric,” in Perfor-
mance Evaluation Methodologies and Tools (VALUETOOLS), 2014 8th
International Conference on, pp. 90–97, ICST, 2014.

[25] F. Mehmeti and T. Spyropoulos, “Performance analysis of mobile
data offloading in heterogeneous networks,” IEEE Transactions on
Mobile Computing, vol. 16, no. 2, pp. 482–497, 2016.
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