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Abstract. This paper deals with a non-self-adjoint eigenvalue problem{
a(x)y′′(x) + b(x)y′(x) = λy(x),

y(0) =
∫ 1
0 y(x)dν0(x), y(1) =

∫ 1
0 y(x)dν1(x),

which is associated with the generator of one dimensional diffusions with ran-

dom jumps from the boundary. We focus on the dependence of spectral gap,
eigenvalues and eigenfunctions on the coefficients a, b and the probability dis-

tributions ν0, ν1. To prove this, we show that all the eigenvalues are confined

to a parabolic neighborhood of the real axis. Moreover, we also prove that
zero is an algebraically simple eigenvalue of the problem.

1. Introduction

In this paper, we consider the following non-self-adjoint eigenvalue problem

(1.1)

{
ly(x) := a(x)y′′(x) + b(x)y′(x) = λy(x), x ∈ (0, 1) ,

y(0) =
∫ 1

0
y(x)dν0(x), y(1) =

∫ 1

0
y(x)dν1(x),

where

(1.2) ν0 and ν1 are probability distributions on (0, 1)

and

(1.3) a ∈W 2,2(J,R), b ∈W 1,2(J,R), a < 0 on J = [0, 1].

It is well known that the differential operator associated with the problem (1.1) is
the generator of one dimensional diffusions with random jumps from the boundary.

In the last decades, diffusions with random jumps from the boundary have at-
tracted enormous interest for various probability considerations and practical in-
terests in genetics (see, e.g., [1–11] and the references therein). These start with
the fundamental work of W. Feller ([7, 12]) which characterized completely the an-
alytic structure of one-dimensional diffusion processes and which referred to such
a process as “instantaneous return process”. The process itself can be easily de-
scribed. Consider a diffusion process with initial value x ∈ D in an open domain
D ⊂ Rd which we assume to have smooth boundary. Let {νξ : ξ ∈ ∂D} be a family
of probability distributions on the domain D. When the boundary point ξ ∈ ∂D
is reached, an instantaneous return into the interior is effected according to the

2010 Mathematics Subject Classification. Primary 34B09; Secondary 34L15, 47A75, 60J60.
Key words and phrases. diffusions, eigenvalues, non-self-adjoint, dependence.
*The work was done at the University of Vienna while the author was visiting the Fakultät

für Mathematik, supported by the China Scholarship Council. The author is indebted to Gerald

Teschl and Guoliang Shi for helpful hints with respect to the literature. This research is supported
by the National Natural Science Foundation of China under Grant No. 11601372.

1



2 JUN YAN

probability distribution νξ and the process starts afresh. The same mechanism is
repeated independently each time the process reaches the boundary. Such a process
is ergodic and its distribution converges in total variation exponentially fast to its
invariant measure. What should be mentioned here is that in [2, Theorem 1], I.
Ben-Ari and R. G. Pinsky provided a characterization of the rate in terms of the
spectral gap/eigenvalue problem corresponding to the generator of the process.

Thus it is fair to say that spectral analysis of the generator, which gave rise to
several interesting results recently, have probabilistic significance (see, e.g., [1, 6,
9, 10, 13]). In this context, it is then important to understand how a change of
the generator affects the spectral gap, the eigenvalues and eigenfunctions. When
the probability distribution νξ is independent of the point of exit ξ, M. Kolb and
A. Wubker established in [10] the continuous dependence of the spectral gap on
νξ, which answers a question posed by I. Ben-Ari and R. Pinsky in [1]. Here the
continuity is meant with respect to the weak topology. This is our starting point
and we aim to further discuss the dependence of the eigenvalues, the spectral gap
and eigenfunctions on all the parameters of the problem (1.1) including the diffusion
coefficient a, the drift coefficient b and the probability distributions ν0, ν1. To the
best of our knowledge, such questions have not been investigated before.

Let us now briefly present the results of this paper. In Section 2, to undertake our
study on the problem (1.1) , we first introduce a “boundary value problem space”
Ω = {ω = (a, b, ν0, ν1); (1.2) and (1.3) hold}. Here each element ω = (a, b, ν0, ν1) ∈
Ω represents an eigenvalue problem (1.1). By an eigenvalue of ω ∈ Ω we mean an
eigenvalue of the problem (1.1). For the topology of Ω we use a metric d defined as
follows: for ω = (a, b, ν0, ν1) ∈ Ω, ω0 = (a0, b0, ν

0
0 , ν

0
1) ∈ Ω, define

(1.4) d(ω, ω0) =

∫ 1

0

(∣∣∣∣1a − 1

a0

∣∣∣∣+

∣∣∣∣ ba − b0
a0

∣∣∣∣+
∣∣ν0 − ν0

0

∣∣+
∣∣ν1 − ν0

1

∣∣) .
It can be shown in this section that each eigenvalue of the problem (1.1) can be
embedded into a continuous eigenvalue branch (see Theorem 2.11). More precisely,
given any ε > 0, there exists a δ > 0 such that if ω = (a, b, ν0, ν1) ∈ Ω satisfies

d(ω, ω0) < δ,

then the problem ω has an eigenvalue λ(ω) satisfying

(1.5) |λ(ω)− λ(ω0)| < ε,

where λ(ω0) is assumed to be an eigenvalue of the problem ω0 = (a0, b0, ν
0
0 , ν

0
1) ∈ Ω.

In view of this, eigenfunctions can be found which depend continuously on the
eigenvalue problem in the uniform norm (see Proposition 2.16).

Section 3 provides a characterization of the existence region of the eigenvalues,
that is, there exists a positive constant R0 such that all the eigenvalues of the
problem (1.1) lie in the region

Λ =

{
λ ∈ C

∣∣∣∣∣Reλ >
(Imλ)

2

4R2
0

−R2
0

}
.

This leads us to give a definition (Remark 3.2) of the m-th eigenvalue λm, m ∈ N0.
Note that in this paper N0 := N ∪ {0} and N denotes the set of positive integers.

Based on the meaning of λm, a natural question arises by noticing that there is
no index on the eigenvalue in (1.5): what can be said about the dependence of the
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m-th eigenvalue λm on the eigenvalue problem (1.1)? This is the main question we
want to address in Section 4. Let us now present our principal result.

Theorem 1.1. Let ω = (a, b, ν0, ν1) ∈ Ω and ωn = (an, bn, ν0,n, ν1,n) ∈ Ω, n ∈ N.
Assume that

(1.6) ‖an − a‖W 2,2 → 0, ‖bn − b‖W 1,2 → 0, ν0,n
w→ ν0, ν1,n

w→ ν1, as n→∞.

Denote the m-th eigenvalue of ωn by λm(ωn).
(1) Denote the eigenvalues of ω as follows,

λ0
0(ω), λ0

1(ω), · · · , λ0
k1−1(ω);λ1

k1(ω), λ1
k1+1(ω), · · · , λ1

k2−1(ω); · · · ;

λjkj (ω), λjkj+1(ω), · · · , λjkj+1−1(ω); · · ·

where

Reλjkj (ω) = Reλjkj+1(ω) = · · · = Reλjkj+1−1(ω) < Reλj+1
kj+1

(ω),

Imλjkj (ω) ≤ Imλjkj+1(ω) ≤ · · · ≤ Imλjkj+1−1(ω), j ∈ N0, kj ∈ N0,

k0 = 0 and k0 < k1 < · · · < kj < · · · .

Then for each j ∈ N0, given any ε > 0, there exists a number N > 0 such that if
n > N, one has

kj+1−1∑
m=kj

∣∣λmn(ωn)− λjm(ω)
∣∣ < ε,

where the index set {mn : m = kj , . . . , kj+1 − 1} = {m : m = kj , . . . , kj+1 − 1} ;
(2) For brevity denote the m-th eigenvalue of ω by λm(ω). Then for each m ∈ N0,

one has Reλm(ωn)→ Reλm(ω) as n→∞.

Theorem 1.1 gives the dependence of the m-th eigenvalue λm on the problem
(1.1) and illustrates the continuous dependence of Reλm on the coefficients a and
b with respect to the topologies induced by ‖·‖W 2,2 and ‖·‖W 1,2 , respectively. In
addition, Theorem 1.1 shows that Reλm depends continuously on the distributions
ν0, ν1 with respect to the weak topology. It should be mentioned that in [17], Q.
Kong, H. Wu and A. Zettl discussed the dependence of the m-th eigenvalue on the
classical self-adjoint Sturm-Liouville problems; they proved the continuous depen-
dence of the m-th eigenvalue on the coefficients of the Sturm-Liouville equation with
respect to the topology induced by the norm ‖·‖L1 and completely characterized the
discontinuity of the m-th eigenvalue as a functional on the space BC

S of self-adjoint
boundary conditions [17, Theorem 2.1, Lemma 3.32, Theorem 3.39]. It seems to the
authors that the approach used in [17] cannot be adopted to the non-self-adjoint
problem (1.1) in a direct way, since even though the differential equation in (1.1) is
symmetric (see Remark 2.4), there still exists the possibility of complex eigenvalues
due to the non-local boundary conditions. Thus many new ideas and additional ef-
fort are required. To prove Theorem 1.1, we consider a stronger topology than that
induced by (1.4), and then prove that all the eigenvalues of ωn and ω are confined
to a parabolic neighborhood of the real axis (Lemma 4.1) under the assumption
(1.6), which is the key to establish our dependence results.

Finally, as a consequence of Theorem 1.1, Section 5 is devoted to prove the con-
tinuity dependence of the spectral gap on the coefficients a, b and distributions ν0,
ν1 (see Theorem 1.2). We start this section by noticing that zero is an algebraically
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simple eigenvalue of the problem (1.1) and all the nonzero eigenvalues have strictly
positive real part (see Proposition 5.1).

Theorem 1.2. Let ω = (a, b, ν0, ν1) ∈ Ω and ωn = (an, bn, ν0,n, ν1,n) ∈ Ω, n ∈ N.
If ‖an − a‖W 2,2 → 0, ‖bn − b‖W 1,2 → 0, ν0,n

w→ ν0, ν1,n
w→ ν1, as n → ∞, one has

γ1 (ωn)→ γ1(ω), as n→∞, where

γ1(ω) := inf {Reλ|λ is an eigenvalue of the problem ω and λ 6= 0 }

and

γ1(ωn) := inf {Reλ|λ is an eigenvalue of the problem ωn and λ 6= 0 } .

Despite our purely theoretical study we want to mention that the dependence
results considered in this paper might have some importance on the numerical
computation of the spectral gap, eigenvalues and eigenfunctions of the problem
(1.1).

2. Continuity of Eigenvalues and Eigenfunctions

In this section, we show that the eigenvalues and eigenfunctions depend con-
tinuously on the problem (1.1), i.e., a “small” change of the problem results in a
“small” change of each eigenvalue and each eigenfunction (see Theorem 2.11 and
Proposition 2.16). Let us first state several preliminary facts.

Lemma 2.1. The initial value problem consisting of the differential equation in
(1.1) and the initial conditions

(2.1) y(0) = h, y′(0) = k, h, k ∈ C

has a unique solution y(x, λ). And each of the functions y(x, λ) and y′(x, λ) is
continuous on [0, 1]×C. In particular, the functions y(x, λ) and y′(x, λ) are entire
functions of λ ∈ C.

Proof. See [15]. �

Remark 2.2. In fact, it follows from [15] that the derivative of y(x, λ) with respect
to λ is given by

y′λ(x, λ) =

∫ x

0

y2(x, λ)y1(t, λ)− y1(x, λ)y2(t, λ)

a(t) exp
(
−
∫ t

0
b(s)
a(s)ds

) y(t, λ)dt.

Remark 2.3. In this section, without considering the existence of eigenvalues,
assumptions

1

a
,
b

a
∈ L1(J,C)

are sufficient for all the statements to be valid. However, in Section 3-5, the as-
sumptions (1.3) are still needed.

Remark 2.4. Define c(x) := exp
(∫ x

0
b(t)
a(t)dt

)
and w(x) := − c(x)

a(x) . Then the differ-

ential equation in (1.1) can be rewritten as the following form:

− (c(x)y′(x))
′

= λw(x)y(x), x ∈ (0, 1) .



DEPENDENCE OF EIGENVALUES ON THE DIFFUSION OPERATORS 5

Lemma 2.5. Consider the initial value problem consisting of the differential equa-
tion in (1.1) and the initial conditions

(2.2) y(0) = h, y′(0) = k, h, k ∈ C.

Denote the unique solution by y (·, h, k, a, b, λ) . Then, for any given ε > 0, there
exists a number δ > 0 such that if

|λ− λ0|+ |h− h0|+ |k − k0|+
∫ 1

0

(∣∣∣∣1a − 1

a0

∣∣∣∣+

∣∣∣∣ ba − b0
a0

∣∣∣∣) < δ,

then

|y(x, h, k, a, b, λ)− y(x, h0, k0, a0, b0, λ0)| < ε

and

|y′(x, h, k, a, b, λ)− y′(x, h0, k0, a0, b0, λ0)| < ε

uniformly for all x ∈ [0, 1].

Proof. This is a consequence of [15, Theorem 1.6.2]. �

Let y1 and y2 be the fundamental solutions of the differential equation in (1.1)
determined by the initial conditions

(2.3) y1(0, λ) = y′2(0, λ) = 1, y2(0, λ) = y′1(0, λ) = 0, λ ∈ C.

Lemma 2.6. A number λ is an eigenvalue of the problem (1.1) if and only if
(2.4)

∆(λ) := det

( ∫ 1

0
y1(x, λ)dν0(x)− 1

∫ 1

0
y2(x, λ)dν0(x)∫ 1

0
y1(x, λ)dν1(x)− y1(1, λ)

∫ 1

0
y2(x, λ)dν1(x)− y2(1, λ)

)
= 0.

Remark 2.7. Note that in this paper the algebraic multiplicity of an eigenvalue
is its order as a zero of the characteristic function ∆(λ).

Remark 2.8. If a(x), b(x) are all real-valued, one has yi(x, λ) = yi(x, λ), λ ∈ C,
i = 1, 2. Thus ∆(λ) = ∆(λ). This implies that if λ∗ is an eigenvalue of the problem
(1.1) , then so is λ∗. Moreover, the algebraic multiplicity of λ∗ and λ∗ are equal.
(Note that in this paper the overbar means the complex conjugate.)

Remark 2.9. In this paper, the assumption (1.2) means that νi, i = 0, 1, are
distribution functions (non-decreasing functions) with lim

x→0+
νi(x) = νi(0) = 0 and

lim
x→1−

νi(x) = νi(1) = 1. And we refer to [7] for the detailed probabilistic background

of the diffusion process associated with (1.1).

Lemma 2.10. (Continuity of the zeros of an analytic function). Let A be an
open set in the complex plane C, F a metric space, f a continuous complex valued
function on A × F such that for each α ∈ F, the map z → f(z, α) is an analytic
function on A. Let B be an open subset of A whose closure B in C is compact and
contained in A, and let α0 ∈ F be such that no zero of f(z, α0) is on the boundary
of B. Then there exists a neighborhood W of α0 in F such that :

(a) For any α ∈ W, f(z, α) has no zero on the boundary of B.
(b) For any α ∈ W, the sum of the orders of the zeros of f(z, α) contained in B

is independent of α.

Proof. See 9.17.4 in [16]. �
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Now we aim to show that the eigenvalues are continuous functions of all the
parameters of the problem including the coefficients a, b and distributions ν0, ν1

(Theorem 2.11). Recall the “boundary value problem space” Ω = {ω = (a, b, ν0, ν1);
(1.2) and (1.3) hold} defined in the introduction.

Theorem 2.11. Let ω0 = (a0, b0, ν
0
0 , ν

0
1) ∈ Ω. Assume that λ(ω0) is an eigenvalue

of the problem ω0. Then, given any ε > 0, there exists a δ > 0 such that if ω =
(a, b, ν0, ν1) ∈ Ω satisfies

(2.5) d(ω, ω0) < δ,

then the problem ω has an eigenvalue λ(ω) satisfying

(2.6) |λ(ω)− λ(ω0)| < ε.

Proof. For any problem ω = (a, b, ν0, ν1) ∈ Ω, denote the characteristic function
introduced in Lemma 2.6 by

∆(ω, λ)

= det

( ∫ 1

0
y1(x, a, b, λ)dν0 − 1

∫ 1

0
y2(x, a, b, λ)dν0∫ 1

0
y1(x, a, b, λ)dν1 − y1(1, a, b, λ)

∫ 1

0
y2(x, a, b, λ)dν1 − y2(1, a, b, λ)

)
.

We first show that ∆(ω, λ) is an entire function of λ ∈ C and is continuous in ω ∈ Ω.
In fact, the analyticity of ∆(ω, λ) on λ follows directly from Lemma 2.1. Moreover,
integrating by parts shows that for ω = (a, b, ν0, ν1) ∈ Ω and ω0 = (a0, b0, ν

0
0 , ν

0
1) ∈

Ω, ∣∣∣∣∫ 1

0

y2(x, a, b, λ)dν1(x)−
∫ 1

0

y2(x, a0, b0, λ)dν0
1(x)

∣∣∣∣
≤ |y2(1, a, b, λ)− y2(1, a0, b0, λ)|

+

∣∣∣∣∫ 1

0

y′2(x, a, b, λ)ν1(x)dx−
∫ 1

0

y′2(x, a0, b0, λ)ν1(x)dx

∣∣∣∣
+

∣∣∣∣∫ 1

0

y′2(x, a0, b0, λ)ν1(x)dx−
∫ 1

0

y′2(x, a0, b0, λ)ν0
1(x)dx

∣∣∣∣ .
Hence we conclude from Lemma 2.5 that

∫ 1

0
y2(x, a, b, λ)dν1(x) is continuous in

ω ∈ Ω. An analogous proof yields that ∆(ω, λ) is continuous in ω ∈ Ω.
From Lemma 2.6, we know that λ(ω) is an eigenvalue if and only if

∆(ω, λ(ω)) = 0.

This means that if µ is an eigenvalue of the problem ω0, then ∆(ω0, µ) = 0. Since µ is
an isolated eigenvalue of the problem ω0, there exists η > 0, such that ∆(ω0, λ) 6= 0
for λ ∈ Γη := {λ ∈ C ||λ− µ| = η } . Thus the statement of Proposition (2.11)
follows from Lemma 2.10. �

Remark 2.12. In this paper, the algebraic multiplicity of an eigenvalue is the order
of it as a zero of the characteristic function ∆(λ) defined in Lemma 2.6. The linear
space spanned by the eigenfunctions for an eigenvalue is called the eigenspace for
the eigenvalue. The geometric multiplicity of an eigenvalue is defined to be the
dimension of its eigenspace, which is either 1 or 2.
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Remark 2.13. If the algebraic multiplicity of λ(ω0) is χ, it follows from Theorem
2.11 and Lemma 2.6 that for ω satisfying (2.5) , (2.6) holds for χ eigenvalues of ω.
In other words, each eigenvalue of algebraic multiplicity χ is on χ locally continuous
eigenvalue branches. Multiple eigenvalues are counted according to their algebraic
multiplicity.

Remark 2.14. Let ω0 = (a0, b0, ν
0
0 , ν

0
1) ∈ Ω. Assume that Γ is any contour such

that ω0 has no eigenvalue on it and m eigenvalues inside it. Then there exists a
neighborhood U of ω0 in Ω such that any ω ∈ U also has exactly m eigenvalues
inside the contour Γ. Here eigenvalues are counted according to their algebraic
multiplicity.

Remark 2.15. Note that there is no index on λ in (2.6) , thus it is natural to pay
attention to the dependence of the m-th eigenvalue λm on the problem. This will
be addressed in Section 4 and the meaning of λm will be given in Remark 3.2.

To conclude this section, we prove the following proposition, which illustrates
the dependence of eigenfunctions on the problem (1.1).

Proposition 2.16. Let ω0 = (a0, b0, ν
0
0 , ν

0
1) ∈ Ω. Assume λ(ω) be the continuous

eigenvalue branch through the eigenvalue λ(ω0). Then the following statements are
valid.

(i) Assume the eigenvalue λ(ω0) is geometrically simple and let u = u(·, ω0)
denote an eigenfunction of the eigenvalue λ(ω0). Then there exists a neighborhood
M ⊂ Ω of ω0 such that λ(ω) is simple for every ω in M . Moreover, there exist
eigenfunctions u = u(·, ω) of λ(ω) such that

(2.7) u(·, ω)→ u(·, ω0), u′(·, ω)→ u′(·, ω0), as ω → ω0 in Ω,

both uniformly on the interval [0, 1].
(ii) Assume that λ(ω) is a geometrically double eigenvalue for all ω in some

neighborhood N ⊂ Ω of ω0. Let u = u(·, ω0) be any eigenfunction of the eigenvalue
λ(ω0). Then there exist eigenfunctions u = u(·, ω) of λ(ω) such that

(2.8) u(·, ω)→ u(·, ω0), u′(·, ω)→ u′(·, ω0), as ω → ω0 in Ω,

both uniformly on the interval [0, 1].

Proof. (i) Denote ω := (a, b, ν0, ν1) and D(ω) :=( ∫ 1

0
y1(x, a, b, λ(ω))dν0 − 1

∫ 1

0
y2(x, a, b, λ(ω))dν0∫ 1

0
y1(x, a, b, λ(ω))dν1 − y1(1, a, b, λ(ω))

∫ 1

0
y2(x, a, b, λ(ω))dν1 − y2(1, a, b, λ(ω))

)
.

Lemma 2.6 implies that detD(ω) = 0 and thus 0 ≤ rankD(ω0) < 2. Since λ(ω0)
is geometrically simple, we have rankD(ω0) = 1. Hence without loss of generality,
assume that ∫ 1

0

y1(x, a0, b0, λ(ω0))dν0
0(x)− 1 6= 0.

From the proof of Theorem 2.11, it follows that
∫ 1

0
y1(x, a, b, λ)dν0(x) is continuous

in ω ∈ Ω. Thus there exists a neighborhood M of ω0 such that for every ω =
(a, b, ν0, ν1) ∈M, ∫ 1

0

y1(x, a, b, λ(ω))dν0(x)− 1 6= 0,



8 JUN YAN

and hence rankD(ω) = 1. For each ω ∈M, denote(
c1(ω)
c2(ω)

)
:=

(
−
∫ 1

0
y2(x, a, b, λ(ω))dν0 ·

(∫ 1

0
y1(x, a, b, λ(ω))dν0 − 1

)−1

1

)
.

Then direct calculation yields D(ω)

(
c1(ω)
c2(ω)

)
=

(
0
0

)
. This implies that for

each ω ∈M,
c1(ω)y1(x, a, b, λ(ω)) + c2(ω)y2(x, a, b, λ(ω))

is an eigenfunction corresponding to λ(ω). Moreover, it is obvious that

(
c1(ω)
c2(ω)

)
is continuous in ω0. This together with Lemma 2.5 directly yield (2.7) .

(ii) Note that λ(ω) is a geometrically double eigenvalue for all ω in some neigh-
borhood N of ω0 in Ω. Thus we can choose eigenfunctions u = u(·, ω) of λ(ω) all
of which satisfy the same initial condition at 0 since a linear combination of two
linear independent eigenfunctions can be chosen to satisfy initial conditions. Then
(2.8) follows from Lemma 2.5. �

3. The existence region of eigenvalues

Since the eigenvalue problem (1.1) is non-self-adjoint, there exists the possibility
of complex eigenvalues. Hence in this section we focus on the existence region of
the complex eigenvalues (see Theorem 3.1), which plays a key role in analyzing the
dependence of the m-th eigenvalue λm on the eigenvalue problem.

Theorem 3.1. Given any problem (1.1) , there exists a positive constant R0 such
that all its eigenvalues lie in the region

Λ =

{
λ ∈ C

∣∣∣∣∣Reλ >
(Imλ)

2

4R2
0

−R2
0

}
.

Remark 3.2. On the basis of the above statement, we denote by λm, m ∈ N0, the
eigenvalues of the problem (1.1) counted with algebraic multiplicities and arranged
by increasing of their real parts; if real parts equal, then we arrange the eigenvalues
by increasing of their imaginary parts. In other words, the eigenvalues λm, m ∈ N0,
are arranged such that Reλ0 ≤ Reλ1 ≤ Reλ2 ≤ · · · ≤ Reλm ≤ · · · , with the
additional condition that Imλm ≤ Imλm+1 whenever Reλm = Reλm+1.

Before giving the proof of Theorem 3.1, we first introduce some preliminary facts.

Denote l :=
∫ 1

0
ds√
−a(s)

and let t = t(x) = l−1 ·
∫ x

0
ds√
−a(s)

, then the problem (1.1)

becomes

(3.1)

{
−y′′(t) + p(t)y′(t) = λl2y(t), t ∈ (0, 1),

y(0) =
∫ 1

0
y(t)dν̃0(t), y(1) =

∫ 1

0
y(t)dν̃1(t),

where p(t) =
l(b(x)− 1

2a
′(x))√

−a(x)
, ν̃i(t) = νi(x), i = 0, 1. Under the transformation

v(t) = exp
(
−
∫ t
0
p(s)ds

2

)
y(t), problem (3.1) is equivalent to the following eigenvalue

problem

(3.2)

{
−v′′(t) + q(t)v(t) = λl2v(t), t ∈ (0, 1),

v(0) =
∫ 1

0
P (t)v(t)dν̃0(t), P (1)v(1) =

∫ 1

0
P (t)v(t)dν̃1(t),



DEPENDENCE OF EIGENVALUES ON THE DIFFUSION OPERATORS 9

where q(t) = 1
4p

2(t) − 1
2p
′(t), P (t) = exp

( ∫ t
0
p(s)ds

2

)
. Note that the assumption

(1.3) clearly implies that p ∈W 1,2(J,R) and q ∈ L1(J,R). Let v1(t, λ) and v2(t, λ)
be the fundamental solutions of the differential equation in (3.2) determined by the
initial conditions

v1(0, λ) = v′2(0, λ) = 1, v2(0, λ) = v′1(0, λ) = 0, λ ∈ C.

Denote

∆1(λ) :=

det

( ∫ 1

0
P (t)v1(t, λ)dν̃0(t)− 1

∫ 1

0
P (t)v2(t, λ)dν̃0(t)∫ 1

0
P (t)v1(t, λ)dν̃1(t)− P (1)v1(1, λ)

∫ 1

0
P (t)v2(t, λ)dν̃1(t)− P (1)v2(1, λ)

)
.

Lemma 3.3. A number λ is an eigenvalue of the eigenvalue problem (3.2) if and
only if ∆1(λ) = 0.

Proof. This result follows from a direct calculation. �

Remark 3.4. A number λ is an eigenvalue of the problem (3.2) if and only if it is
an eigenvalue of the problem (1.1) . Moreover, it follows from a direct calculation
that ∆1(λ) ≡ ∆(λ). Recall that ∆(λ) is the characteristic function defined in (2.4) .

Based on the above statements, to prove Theorem 3.1, it is sufficient to analyze
the existence region of zeros of ∆1(λ). Now we first give an estimate on ∆1(λ),

which plays an important role in what follows. Let us use Im
√
λ to denote the

imaginary part of
√
λ, where the argument of the square-root function is chosen

so that arg(
√
λ) ∈

(
−π2 ,

π
2

]
. For brevity we will often use the notation ‖q‖1 :=

‖q‖L1(J,R) .

Lemma 3.5. The characteristic function ∆1(λ) satisfies

(3.3) |∆1(λ)−∆0(λ)| ≤ C 1

l2 |λ|
exp

(
l
∣∣∣Im
√
λ
∣∣∣+ ‖q‖1

)
where C = 4 exp

(∫ 1

0
|p(t)|dt

)
and

∆0(λ) : =

∫ 1

0

∫ 1

0

P (s)P (t)
sin
(
l
√
λ (s− t)

)
l
√
λ

dν̃0(t)dν̃1(s)

−P (1)

∫ 1

0

P (t)
sin
(
l
√
λ (1− t)

)
l
√
λ

dν̃0(t)

−
∫ 1

0

P (t)
sin
(
l
√
λt
)

l
√
λ

dν̃1(t) + P (1)
sin
(
l
√
λ
)

l
√
λ

.

Proof. In order to give the estimation, now we define a function

Ψ(s, t, λ) := v2(s, λ)v1(t, λ)− v1(s, λ)v2(t, λ).
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Hence from the definition of ∆1(λ), it follows that

∆1(λ)−∆0(λ)(3.4)

=

∫ 1

0

∫ 1

0

P (s)P (t)

Ψ(s, t, λ)−
sin
(
l
√
λ (s− t)

)
l
√
λ

dν̃0(t)dν̃1(s)

−P (1)

∫ 1

0

P (t)

Ψ(1, t, λ)−
sin
(
l
√
λ (1− t)

)
l
√
λ

dν̃0(t)

−
∫ 1

0

P (t)

[
v2(t, λ)− sin(l

√
λt)

l
√
λ

]
dν̃1(t) + P (1)

[
v2(1, λ)− sin(l

√
λ)

l
√
λ

]
.

In order to prove (3.3) , we first show that for (s, t) ∈ [0, 1]× [0, 1] and λ ∈ C\{0},
the following estimate

(3.5)

∣∣∣∣∣Ψ(s, t, λ)− sin(l
√
λ (s− t))
l
√
λ

∣∣∣∣∣ ≤ 1

l2 |λ|
exp

(∣∣∣lIm√λ∣∣∣ |s− t|+ ‖q‖1)
is valid. In fact, for fixed t ∈ [0, 1] , as a function of s, Ψ(s, t, λ) is a solution of the
equation

−v′′(s) + q(s)v(s) = λl2v(s)

determined by the initial conditions

Ψ(s, t, λ)|s=t = 0,(3.6)

dΨ(s, t, λ)

ds

∣∣∣∣
s=t

= det

(
v1(t, λ) v2(t, λ)
v′1(t, λ) v′2(t, λ)

)
= 1, λ ∈ C.(3.7)

Hence analogous to [18], for (s, t, λ) ∈ [0, 1]× [0, 1]×C, Ψ(s, t, λ) can be written as
the following form:

(3.8) Ψ(s, t, λ) =
sin(l
√
λ (s− t))
l
√
λ

+
∑
n≥1

Sn(s, t, λ)

where

Sn(s, t, λ)

=


∫

0≤t1≤···≤tn+1:=s−t sλ(t1)
n∏
i=1

sλ(ti+1 − ti )q(ti + t)dt1 · · · dtn, t < s,

−
∫

0≤t1≤···≤tn+1:=t−s sλ(t1)
n∏
i=1

sλ(ti+1 − ti )q(t− ti)dt1 · · · dtn, s ≤ t,

and sλ(t) = sin(l
√
λt)

l
√
λ

. Note that for 0 ≤ t ≤ 1,∣∣∣∣∣ sin(l
√
λt)

l
√
λ

∣∣∣∣∣ ≤ 1

l
∣∣∣√λ∣∣∣ exp

(
l
∣∣∣Im√λ∣∣∣ t) and

∣∣∣∣∣ sin(l
√
λt)

l
√
λ

∣∣∣∣∣ ≤ exp
(
l
∣∣∣Im√λ∣∣∣ t) .
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Thus when s > t,

|Sn(s, t, λ)| ≤
exp

(
l
∣∣∣Im√λ∣∣∣ (s− t))
l2 |λ|

∫
0≤t1≤···≤tn+1:=s−t

n∏
i=1

|q(ti + t)|dt1 · · · dtn

≤
exp

(
l
∣∣∣Im√λ∣∣∣ (s− t))
l2 |λ|

(∫ s−t
0
|q(u+ t)|du

)n
n!

≤
exp

(
l
∣∣∣Im√λ∣∣∣ (s− t))
l2 |λ|

‖q‖n1
n!

.

When t ≥ s, through a similar process, one has

(3.9) |Sn(s, t, λ)| ≤
exp

(
l
∣∣∣Im√λ∣∣∣ (t− s))
l2 |λ|

‖q‖n1
n!

.

Therefore, (3.5) can be easily obtained from (3.8) and (3.9) . Moreover, it follows
from [18] that v2 satisfies

(3.10)

∣∣∣∣∣v2(t, λ)− sin(l
√
λt)

l
√
λ

∣∣∣∣∣ ≤ 1

l2 |λ|
exp

(
l
∣∣∣Im√λ∣∣∣ t+ ‖q‖1

)
.

This together with (3.4) and (3.5) yield that

|∆1(λ)−∆0(λ)|

≤ 1

l2 |λ|

∫ 1

0

∫ 1

0

P (s)P (t) exp
(
l
∣∣∣Im√λ∣∣∣ |s− t|+ ‖q‖1)dν̃0(t)dν̃1(s)

+
1

l2 |λ|
P (1)

∫ 1

0

P (t) exp
(
l
∣∣∣Im√λ∣∣∣ (1− t) + ‖q‖1

)
dν̃0(t)

+
1

l2 |λ|

∫ 1

0

P (t) exp
(
l
∣∣∣Im√λ∣∣∣ t+ ‖q‖1

)
dν̃1(t)

+P (1)
1

l2 |λ|
exp

(
l
∣∣∣Im√λ∣∣∣+ ‖q‖1

)
≤ C

1

l2 |λ|
exp

(
l
∣∣∣Im√λ∣∣∣+ ‖q‖1

)
,

where C = 4 exp
(∫ 1

0
|p(t)|dt

)
. This completes the proof. �

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. For simplicity, denote k =
√
λ. In view of Lemma 2.6 and

Remark 3.4, it is sufficient to prove that all the zeros of ∆1(k2) lie in a strip parallel
to the real axis. Denote

I1 : =

∫ 1

0

P (t) sin (lkt) dν̃1(t),

I2 : = P (1)

∫ 1

0

P (t) sin (lk (1− t)) dν̃0(t),

I3 : =

∫ 1

0

∫ 1

0

P (s)P (t) sin (lk (s− t)) dν̃0(t)dν̃1(s).
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Note that

lk∆0(k2) = I3 − I2 − I1 + P (1) sin (lk) .

To prove Theorem 3.1, we first show that

e−l|Imk|
∣∣lk∆0(k2)

∣∣ ≥ e−l|Imk| (|P (1)| |sin (lk)| − |I1| − |I2| − |I3|)(3.11)

≥ |P (1)|
2
− C · Ω (Imk) ,

where C = 4 exp
(∫ 1

0
|p(t)|dt

)
and

Ω (Imk) : = e−2l|Imk| +

∫ 1

0

el|Imk|(t−1)dν̃1(t) +

∫ 1

0

e−l|Imk|tdν̃0(t)

+

∫ 1

0

el|Imk|(t−1)dν̃0(t).

In fact, since for each z ∈ C,

e|Imz| − e−|Imz|

2
≤ |sin z| ≤ e|Imz| + e−|Imz|

2
≤ e|Imz|,

we conclude that

|I1| =

∣∣∣∣∫ 1

0

P (t) sin (lkt) dν̃1(t)

∣∣∣∣ ≤ exp

(∫ 1

0

|p(t)|dt
)∫ 1

0

el|Imk|tdν̃1(t),

|I2| =

∣∣∣∣P (1)

∫ 1

0

P (t) sin (lk (t− 1)) dν̃0(t)

∣∣∣∣
≤ exp

(∫ 1

0

|p(t)|dt
)∫ 1

0

el|Imk|(1−t)dν̃0(t)

|I3| =

∣∣∣∣∫ 1

0

∫ 1

0

P (s)P (t) sin (lk (s− t)) dν̃0(t)dν̃1(s)

∣∣∣∣
≤ 1

2
exp

(∫ 1

0

|p(t)|dt
) ∣∣∣∣∫ 1

0

∫ 1

0

(
el|Imk|(t−s) + e−l|Imk|(t−s)

)
dν̃0(t)dν̃1(s)

∣∣∣∣
≤ 1

2
exp

(∫ 1

0

|p(t)|dt
)[∫ 1

0

el|Imk|tdν̃0(t) +

∫ 1

0

el|Imk|sdν̃1(s)

]
,

and

e−l|Imk| |P (1)| |sin (lk)| ≥ e−l|Imk| |P (1)| e
l|Imk| − e−l|Imk|

2

≥ |P (1)|
2
− |P (1)| e−2l|Imk|

2
.

Thus (3.11) can be obtained directly. Moreover, it can be shown that

(3.12) lim
Imk→∞

Ω (Imk) = 0.

In fact, note that ν̃i(t), i = 0, 1, are nondecreasing functions, and lim
t→0+

ν̃i(t) =

ν̃i(0) = 0, lim
t→1−

ν̃i(t) = ν̃i(1) = 1. Thus given any ε > 0, there exists a δ > 0 such

that

ν̃i(1)− ν̃i(1− δ) <
ε

2
.
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For such a δ > 0, there exists a number K0 > 0 such that if |Imk| > K0,∫ 1

0

el|Imk|(t−1)dν̃i(t) =

∫ 1−δ

0

el|Imk|(t−1)dν̃i(t) +

∫ 1

1−δ
el|Imk|(t−1)dν̃i(t)(3.13)

≤ e−δl|Imk| + ν̃i(1)− ν̃i(1− δ) ≤ ε, i = 0, 1.

Thus

lim
Imk→∞

∫ 1

0

el|Imk|(t−1)dν̃i(t) = 0, i = 0, 1.

Similarly, lim
Imk→∞

∫ 1

0
e−l|Imk|tdν̃0(t) = 0. This arrives the statement (3.12).

Thus from (3.11) and (3.12) , it is obvious that there exists a number K > 0
such that if |Imk| > K,

e−l|Imk|
∣∣lk∆0(k2)

∣∣ ≥ |P (1)|
2
− C · Ω (Imk)(3.14)

≥ |P (1)|
4

.

What should be noted is that the positive number K depends only on |P (1)| ,
C = 4 exp

(∫ 1

0
|p(t)|dt

)
, l, ν̃0 and ν̃1.

Now we define E(k) := lk∆1(k2) − lk∆0(k2). Then it follows from Lemma 3.5
that

(3.15) |E(k)| ≤ C 1

l |k|
exp (l |Imk|+ ‖q‖1) .

Suppose that k0 is an arbitrary zero of ∆1(k2), i.e., k2
0 is an eigenvalue of the

problem (1.1) or (3.2). Then

(3.16) lk0∆1(k2
0) = lk0∆0(k2

0) + E(k0) = 0.

Thus from (3.14) , (3.15) and (3.16) , if |Imk0| > K, we have

|Imk0| ≤ |k0| ≤ C exp (‖q‖1)
exp (l |Imk0|)
l2 |k0∆0(k2

0)|
(3.17)

≤ C exp (‖q‖1)
4

l |P (1)|
.

Hence |Imk0| ≤ max
{
C exp (‖q‖1) 4

l|P (1)| ,K
}
, which means that all the zeros of

∆1(k2) lie in a strip parallel to the real axis. This completes the proof. �

Remark 3.6. ∆1(λ) is an entire function of order 1
2 . In fact, recall that for any

z ∈ C,
e|Imz| − e−|Imz|

2
≤ |sin z| ≤ e|Imz| + e−|Imz|

2
≤ e|Imz|.

Denote M (r) := max {|∆1(λ)| : |λ| = r} . Recall that C = 4 exp
(∫ 1

0
|p(t)|dt

)
, thus

it follows from Lemma 3.5 that

(3.18) M (r) ≤ C
(

exp (‖q‖1)

l2r
+

1

l
√
r

)
el
√
r.
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Moreover, for λ = −r, r ∈ R+ = (0,+∞) , from Lemma 3.5 and the proof of (3.11) ,
one has

|∆1(λ)| ≥ |P (1)| e
l
√
r − e−l

√
r

2l
√
r

− C
∫ 1

0
el
√
rtdν̃0(t)

l
√
r

− C
∫ 1

0
el
√
rtdν̃1(t)

l
√
r

−C
∫ 1

0
el
√
r(1−t)dν̃0(t)

l
√
r

− C
exp (‖q‖1)

l2r
el
√
r.

This together with (3.18) yield

lim sup
r→∞

log logM (r)

log r
=

1

2
.

Therefore, ∆1(λ) is an entire function of order 1
2 and thus has an infinite number

of zeros ([19, Definition 2.1.1 and Theorem 2.9.2]).

4. Dependence of λm on the Coefficients a, b and Distributions ν0, ν1

In Section 2, we study the continuity of eigenvalues on the eigenvalue problem
with respect to the topology induced by (1.4). In view of the meaning of λm intro-
duced in Remark 3.2, in this section we turn to discuss the dependence of λm on
the problem with respect to a stronger topology (see Theorem 1.1). Throughout
the rest of this paper, ω represents a fixed problem (1.1), i.e.,

ω :

{
a(x)y′′(x) + b(x)y′(x) = λy(x), x ∈ (0, 1) ,

y(0) =
∫ 1

0
y(x)dν0(x), y(1) =

∫ 1

0
y(x)dν1(x).

Consider the problems ωn, n ∈ N, as follows,

ωn :

{
an(x)y′′(x) + bn(x)y′(x) = λy(x), x ∈ (0, 1) ,

y(0) =
∫ 1

0
y(x)dν0,n(x), y(1) =

∫ 1

0
y(x)dν1,n(x),

where νi,n, i = 0, 1, are probability distributions on the interval (0, 1) , and the
coefficients an, bn all satisfy the condition (1.3) .

Similar to the notations related to the problem ω in Section 3, now we introduce
some notations for the problem ωn. Denote

(4.1) pn(t) =
ln
(
bn(x)− 1

2a
′
n(x)

)√
−an(x)

, ν̃0,n(t) = ν0,n(x), ν̃1,n(t) = ν1,n(x)

where t = l−1
n ·

∫ x
0

ds√
−an(s)

and ln :=
∫ 1

0
ds√
−an(s)

. Furthermore, denote

qn(t) =
1

4
p2
n(t)− 1

2
p′n(t), Cn = 4 exp

(∫ 1

0

|pn(t)|dt
)
,(4.2)

Pn(t) = exp

(∫ t
0
pn(s)ds

2

)
.

Corresponding to ∆1(λ) and ∆0(λ) related to the problem ω, ∆1,n(λ) and ∆0,n(λ)
represent the analogous objects related to the problem ωn, respectively.

Let us mention that the proof of Theorem 1.1, which will be given at the end
of this section, relies heavily on the following result (Lemma 4.1). In Section 3,
by analyzing the equivalent eigenvalue problem (3.2) , we show that all the eigen-
values of the problem ω are confined to a parabolic neighborhood of the real axis.
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The following statement illustrates the change of the neighborhood under “small”
perturbations.

Lemma 4.1. If ‖an − a‖W 2,2 → 0, ‖bn − b‖W 1,2 → 0, ν0,n
w→ ν0, ν1,n

w→ ν1, as
n→∞, then there exists a constant R such that all the eigenvalues of the problems
ω and ωn, n ∈ N lie in the region

Λ =

{
λ ∈ C

∣∣∣∣∣Reλ >
(Imλ)

2

4R2
−R2

}
.

Remark 4.2. We say νi,n
w→ νi, i.e., νi,n is weakly convergent to νi, i = 0, 1, iff,

for each f ∈ C(J,R), one has

lim
n→∞

∫ 1

0

f(x)dνi,n(x) =

∫ 1

0

f(x)dνi(x).

Note that from [20, Example 2.1], it follows that for i = 0, 1, νi,n
w→ νi if and only

if lim
n→∞

νi,n(x) = νi(x) for each continuous point x of νi(x).

Remark 4.3. The above remark and Dominated Convergence Theorem ([21, The-

orem 2.8.1]) imply that if νi,n
w→ νi, one has

lim
n→∞

∫ 1

0

|νi,n(x)− νi(x)|dx = 0.

To prove Lemma 4.1, the following result is also needed.

Lemma 4.4. If ‖an − a‖W 2,2 → 0, ‖bn − b‖W 1,2 → 0, as n→∞, then

‖pn − p‖W 1,2 → 0, ‖qn − q‖1 → 0, as n→∞.

Proof. Step 1: We first give some basic facts which will be used in Step 2. Firstly,
since ‖an − a‖W 2,2 → 0 and ‖bn − b‖W 1,2 → 0, it follows from the Sobolev embed-
ding theorem that

(4.3) max
x∈[0,1]

|an(x)− a(x)| → 0, max
x∈[0,1]

|a′n(x)− a′(x)| → 0, as n→∞,

and

(4.4) max
x∈[0,1]

|bn(x)− b(x)| → 0, as n→∞.

Next, for each x ∈ [0, 1] , n ∈ N, there exists a unique number fn(x) ∈ [0, 1] such
that

(4.5) l−1 ·
∫ x

0

ds√
−a(s)

= l−1
n ·

∫ fn(x)

0

ds√
−an(s)

and fn(0) = 0, fn(1) = 1. Implicit functions theorem also shows that for each

n ∈ N, fn(x) is differentiable in x ∈ [0, 1] and f ′n(x) =
ln
√
−an(fn(x))

l
√
−a(x)

. Furthermore,
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based on the equality (4.5) , one has

min
x∈[0,1]

{
1√
−a(x)

}
· |fn(x)− x|

≤

∣∣∣∣∣
∫ fn(x)

0

ds√
−a(s)

−
∫ x

0

ds√
−a(s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ fn(x)

0

ds√
−a(s)

−
∫ fn(x)

0

ds√
−an(s)

∣∣∣∣∣+

∣∣∣∣∣ lnl
∫ x

0

ds√
−a(s)

−
∫ x

0

ds√
−a(s)

∣∣∣∣∣
≤ 2

∫ 1

0

∣∣∣∣∣ 1√
−a(s)

− 1√
−an(s)

∣∣∣∣∣ds.
Hence it follows from (4.3) that

(4.6) max
x∈[0,1]

|fn(x)− x| → 0, as n→∞.

In view of (4.3) and (4.6) , it is easy to see that

max
x∈[0,1]

|an(fn(x))− a(x)| → 0, ln → l, as n→∞.

Therefore, there exists a positive constant M1 such that for all n ∈ N and x ∈ [0, 1],

(4.7)
1

f ′n(x)
=

l
√
−a(x)

ln
√
−an(fn(x))

< M1.

Step 2: Based on the above facts, now we turn to prove

(4.8) ‖pn − p‖W 1,2 → 0, as n→∞.

Indeed, denote M0 := max
x∈[0,1]

{
1

l
√
−a(x)

}
. Then

∫ 1

0

|pn(t)− p(t)|2 dt(4.9)

=

∫ 1

0

1

l
√
−a(x)

∣∣∣∣∣pn
(
l−1
n ·

∫ fn(x)

0

ds√
−an(s)

)
− p

(
l−1 ·

∫ x

0

ds√
−a(s)

)∣∣∣∣∣
2

dx

≤ M0

∫ 1

0

∣∣∣∣∣ ln
[
bn (fn(x))− 1

2a
′
n (fn(x))

]√
−an(fn(x))

−
l
(
b(x)− 1

2a
′(x)

)√
−a(x)

∣∣∣∣∣
2

dx

≤ 2M0

∫ 1

0

∣∣∣∣∣ lnbn (fn(x))√
−an(fn(x))

− lb(x)√
−a(x)

∣∣∣∣∣
2

dx

+
M0

2

∫ 1

0

∣∣∣∣∣ lna′n (fn(x))√
−an(fn(x))

− la′(x)√
−a(x)

∣∣∣∣∣
2

dx.

Moreover, a straightforward calculation yields

p′n(t) = l2n

(
b′n(x)− 1

2
a′′n(x)

)
− l2n

2

(
bn(x)− 1

2a
′
n(x)

)
a′n(x)

an(x)
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where t = l−1
n ·

∫ x
0

ds√
−an(s)

. Thus

∫ 1

0

|p′n(t)− p′(t)|2 dt(4.10)

≤ 4M0

∫ 1

0

∣∣l2nb′n(fn(x))− l2b′(x)
∣∣2 dx+M0

∫ 1

0

∣∣l2na′′n(fn(x))− l2a′′(x)
∣∣2 dx

+M0

∫ 1

0

∣∣∣∣ l2nbn(fn(x))a′n(fn(x))

an(fn(x))
− l2b(x)a′(x)

a(x)

∣∣∣∣2 dx

+
M0

4

∫ 1

0

∣∣∣∣∣ l2n (a′n(fn(x)))
2

an(fn(x))
− l2 (a′(x))

2

a(x)

∣∣∣∣∣
2

dx.

In order to prove (4.8) , we only aim to show

(4.11) lim
n→∞

∫ 1

0

∣∣l2nb′n(fn(x))− l2b′(x)
∣∣2 dx = 0,

since other terms can be dealt with in a similar way. In fact, in view of (4.7) , we
have ∫ 1

0

∣∣l2nb′n(fn(x))− l2b′(x)
∣∣2 dx

≤ 3M1

∫ 1

0

∣∣l2nb′n(fn(x))− l2nb′(fn(x))
∣∣2 f ′n(x)dx+ 3

∫ 1

0

∣∣l2b′(fn(x))− l2b′(x)
∣∣2 dx

+3M1

∫ 1

0

∣∣l2nb′(fn(x))− l2b′(fn(x))
∣∣2 f ′n(x)dx

≤ 3M1l
4
n

∫ 1

0

|b′n(u)− b′(u)|2 du+ 3l2
∫ 1

0

|b′(fn(x))− b′(x)|2 dx

+3
∣∣l2n − l2∣∣2M1

∫ 1

0

|b′(u)|2 du.

It is obvious that

lim
n→∞

∫ 1

0

|b′n(u)− b′(u)|2 du = 0 and lim
n→∞

∣∣l2n − l2∣∣ = 0.

Therefore, in order to prove (4.11) , we just prove

lim
n→∞

∫ 1

0

|b′(fn(x))− b′(x)|2 dx = 0.

Note that b′ ∈ L2(J,R), thus given any ε > 0, there exists a continuous function
ϕ on [0, 1] such that

(4.12)

∫ 1

0

|ϕ(x)− b′(x)|2 dx < ε.
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This together with (4.6) yield that for the above arbitrary ε > 0, there exists a
number N1 > 0 such that if n > N1,∫ 1

0

|b′(fn(x))− b′(x)|2 dx

≤ 3M1

∫ 1

0

|b′(fn(x))− ϕ(fn(x))|2 f ′n(x)dx+ 3

∫ 1

0

|ϕ(fn(x))− ϕ(x)|2 dx

+3

∫ 1

0

|ϕ(x)− b′(x)|2 dx

≤ 3M1

∫ 1

0

|b′(u)− ϕ(u)|2 du+ 3

∫ 1

0

|ϕ(fn(x))− ϕ(x)|2 dx+ 3

∫ 1

0

|ϕ(x)− b′(x)|2 dx

< 3 (M1 + 2) ε.

This proves (4.11), thus (4.8) can be obtained. Now the statement

‖qn − q‖1 → 0, as n→∞

directly follows from (4.8) and∫ 1

0

|qn(t)− q(t)|dt ≤ 1

4

∫ 1

0

∣∣p2
n(t)− p2(t)

∣∣dt+
1

2

∫ 1

0

|p′n(t)− p′(t)|dt.

Therefore, the assertion of Lemma 4.4 is proved. �

Now we are in a position to prove Lemma 4.1.

Proof of Lemma 4.1. Firstly, it follows from Lemma 4.4 that there exists a number
N0 > 0 such that if n > N0,

(4.13) Cn ≤ C + 1, ln ≥
l

2
, ‖qn‖1 ≤ ‖q‖1 + 1, |Pn(1)| ≥ |P (1)|

2
.

Note that all the notations here can be found in (4.1) , (4.2) and Section 3. Next,
we will show that there exists a number N ′0 > 0, which is independent of k ∈ C,
such that if n > N ′0,∫ 1

0

e−ln|Imk|tdν̃0,n(t) ≤
∫ 1

0

e−
l
2 |Imk|tdν̃0(t) +

|P (1)|
24 (C + 1)

,(4.14) ∫ 1

0

eln|Imk|(t−1)dν̃i,n(t) ≤
∫ 1

0

e
1
2 l|Imk|(t−1)dν̃i(t) +

|P (1)|
24 (C + 1)

, i = 0, 1.(4.15)

In fact, in view of max
x∈[0,1]

|an(x)− a(x)| → 0, as n → ∞, there exists a number

N1 > 0, which is independent of x, such that if n > N1,∣∣∣∣∣
∫ x

0

ds√
−an(s)

−
∫ x

0

ds√
−a(s)

∣∣∣∣∣
=

∣∣∣∣∣
∫ x

0

( √
−a(s)√
−an(s)

− 1

)
1√
−a(s)

ds

∣∣∣∣∣ ≤ 1

2

∫ x

0

ds√
−a(s)

and similarly, ∣∣∣∣∣
∫ 1

x

ds√
−an(s)

−
∫ 1

x

ds√
−a(s)

∣∣∣∣∣ ≤ 1

2

∫ 1

x

ds√
−a(s)

.
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Therefore, if n > N1,∫ 1

0

e−ln|Imk|tdν̃0,n(t) =

∫ 1

0

e
−ln|Imk|l−1

n ·
∫ x
0

ds√
−an(s) dν0,n(x)

≤
∫ 1

0

e
− l

2 |Imk|l
−1
∫ x
0

ds√
−a(s) dν0,n(x),∫ 1

0

eln|Imk|(t−1)dν̃i,n(t) =

∫ 1

0

e
−ln|Imk|l−1

n ·
∫ 1
x

ds√
−an(s) dνi,n(x)

≤
∫ 1

0

e
− l

2 |Imk|l
−1
∫ 1
x

ds√
−a(s) dνi,n(x)

=

∫ 1

0

e
l
2 |Imk|

(
l−1

∫ x
0

ds√
−a(s)

−1

)
dνi,n(x), i = 0, 1.

Thus in order to prove (4.14) and (4.15) , it is sufficient to show there exists a
number N2 > 0, which is independent of k ∈ C, such that if n > N2,∫ 1

0

e
− l

2 |Imk|l
−1
∫ x
0

ds√
−a(s) dν0,n(x)(4.16)

≤
∫ 1

0

e
− l

2 |Imk|l
−1
∫ x
0

ds√
−a(s) dν0(x) +

|P (1)|
24 (C + 1)

,∫ 1

0

e
l
2 |Imk|

(
l−1

∫ x
0

ds√
−a(s)

−1

)
dνi,n(x)(4.17)

≤
∫ 1

0

e
l
2 |Imk|

(
l−1

∫ x
0

ds√
−a(s)

−1

)
dνi(x) +

|P (1)|
24 (C + 1)

, i = 0, 1.

Since lim
x→0+

ν0(x) = 0, there exists a continuous point δ ∈ (0, 1) of ν0(x) such that

(4.18) ν0(δ) <
|P (1)|

100 (C + 1)
.

Moreover, since ν0,n
w→ ν0, Remark 4.2 implies that there exists a number N3 > 0

such that if n > N3 one has

(4.19) |ν0,n(δ)− ν0(δ)| < |P (1)|
100 (C + 1)

,

thus

(4.20) ν0,n(δ) <
|P (1)|

50 (C + 1)
.

Denote M := max
x∈[0,1]

{
1√
−a(x)

}
. Note that lim

|Imk|→∞
|Imk|M

2 e
− 1

2 |Imk|
∫ δ
0

ds√
−a(s) = 0 for

the fixed number δ. Thus there exists a number Mδ such that for all k ∈ C,

(4.21)
1

2
e
− 1

2 |Imk|
∫ δ
0

ds√
−a(s) |Imk|M < Mδ.

Hence from (4.18)–(4.21), Remark 4.3 and the integration by parts formula, it
follows that there exists a number N4 > N3, which is independent of k ∈ C, such
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that if n > N4,∣∣∣∣∫ 1

0

e
− l

2 |Imk|l
−1
∫ x
0

ds√
−a(s) dν0,n(x)−

∫ 1

0

e
− l

2 |Imk|l
−1
∫ x
0

ds√
−a(s) dν0(x)

∣∣∣∣
≤

∣∣∣∣∣
∫ δ

0

e
− 1

2 |Imk|
∫ x
0

ds√
−a(s) dν0,n(x)

∣∣∣∣∣+

∣∣∣∣∣
∫ δ

0

e
− 1

2 |Imk|
∫ x
0

ds√
−a(s) dν0(x)

∣∣∣∣∣
+

∣∣∣∣∫ 1

δ

e
− 1

2 |Imk|
∫ x
0

ds√
−a(s) dν0,n(x)−

∫ 1

δ

e
− 1

2 |Imk|
∫ x
0

ds√
−a(s) dν0(x)

∣∣∣∣
≤ ν0,n(δ) + ν0(δ) + |ν0,n(δ)− ν0(δ)|

+
1

2
|Imk|M

∣∣∣∣∫ 1

δ

ν0,n(x)e
− 1

2 |Imk|
∫ x
0

ds√
−a(s) − ν0(x)e

− 1
2 |Imk|

∫ x
0

ds√
−a(s) dx

∣∣∣∣
≤ ν0,n(δ) + ν0(δ) + |ν0,n(δ)− ν0(δ)|+Mδ

∫ 1

0

|ν0,n(x)− ν0(x)|dx

<
|P (1)|

24 (C + 1)
.

This arrives (4.16) . (4.17) can be proved in a similar way. Now we complete the
proof of (4.14) and (4.15) .

Denote N := max {N0, N
′
0} . Then from (3.11) , (4.13) , (4.14) and (4.15) , we

conclude that if n > N,

e−ln|Imk|
∣∣lnk∆0,n(k2)

∣∣ ≥ |Pn(1)|
2

− Cn · Ωn (Imk)(4.22)

≥ |P (1)|
4
− (C + 1) Ω̃ (Imk)

≥ |P (1)|
8
− (C + 1) Ω̂ (Imk)

where

Ωn (Imk) : = e−2ln|Imk| +

∫ 1

0

eln|Imk|(t−1)dν̃1,n(t) +

∫ 1

0

e−ln|Imk|tdν̃0,n(t)

+

∫ 1

0

eln|Imk|(t−1)dν̃0,n(t),

Ω̃ (Imk) : = e−l|Imk| +

∫ 1

0

e
1
2 l|Imk|(t−1)dν̃1(t) +

|P (1)|
24 (C + 1)

+

∫ 1

0

e−
l
2 |Imk|tdν̃0(t) +

|P (1)|
24 (C + 1)

+

∫ 1

0

e
1
2 l|Imk|(t−1)dν̃0(t) +

|P (1)|
24 (C + 1)

and

Ω̂ (Imk) : = e−l|Imk| +

∫ 1

0

e
1
2 l|Imk|(t−1)dν̃1(t) +

∫ 1

0

e−
l
2 |Imk|tdν̃0(t)

+

∫ 1

0

e
1
2 l|Imk|(t−1)dν̃0(t).
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Note that the positive number N is independent of k. In view of (3.12) , we can
also obtain

lim
Imk→∞

Ω̂ (Imk) = 0.

This together with (4.22) yield that there exists a number K1 > 0, which is inde-
pendent of n, such that if |Imk| > K1,

e−ln|Imk|
∣∣lnk∆0,n(k2)

∣∣ ≥ |P (1)|
8
− (C + 1) Ω̂ (Imk)(4.23)

≥ |P (1)|
16

, n > N.

Note that K1 depends only |P (1)| , C = 4 exp
(∫ 1

0
|p(t)|dt

)
, l, ν̃0 and ν̃1.

Now suppose that k0,n is an arbitrary zero of ∆1,n(k2), n > N, i.e., k2
0,n is an

eigenvalue of the problem ωn, n > N. Then from (3.17) , (4.13) and (4.23) , we
conclude that if |Imk0,n| > K1,

|Imk0,n| ≤ |k0,n| ≤ Cn exp (‖qn‖1)
exp (ln |Imk0,n|)
l2n
∣∣k0,n∆0,n(k2

0,n)
∣∣

≤ (C + 1) exp (‖q‖1 + 1)
32

l |P (1)|
.

Thus if n > N, |Imk0,n| ≤ max
{

(C + 1) exp (‖q‖1 + 1) 32
l|P (1)| ,K1

}
. Note that the

maximum depends only on the fixed problem ω. This together with Theorem 3.1
yield the statement of Lemma 4.1. �

As a consequence of Lemma 4.1, Theorem 1.1 announced in the introduction can
be established.

Proof of Theorem 1.1. (1) Let j ≥ 1 be an arbitrary integer and fix a number

r ∈ (Reλj−1
kj−1(ω),Reλjkj (ω)). Denote

Π :=

{
λ ∈ C

∣∣∣∣∣Reλ >
(Imλ)

2

4R2
−R2 and Reλ < r

}
,

where R is the constant obtained in Lemma 4.1. Then Lemma 4.1 implies that
the problem ω has exactly kj eigenvalues, counted with algebraic multiplicities, in
the open region Π and none on the boundary of Π. Thus by Remark 2.14, when
n is sufficiently large, each problem ωn has exactly kj eigenvalues, counted with
algebraic multiplicities, in the region Π. Moreover, it follows from Lemma 4.1 that
these kj eigenvalues are the first kj .

Now fix numbers rl ∈ (Reλl−1
kl−1(ω), Reλlkl(ω)), l = 1, 2, . . . , j − 1, and separate

eigenvalues of the problem ω with different real parts by small open regions Πl in
Π, where

Π1 : = {λ ∈ Π |Reλ < r1 } ,
Πl : = {λ ∈ Π |Reλ > rl−1 and Reλ < rl } , l = 2, 3, . . . , j − 1,

Πj : = {λ ∈ Π |Reλ > rj−1 and Reλ < r} .

Then by applying Remark 2.14 to these open regions Πl, we see that when n is
sufficiently large, each problem ωn has kl−kl−1 eigenvalues, counted with algebraic
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multiplicities, in each region Πl, l = 1, 2, . . . , j. Therefore, the statement (1) of
Theorem 1.1 can be directly obtained from Theorem 2.11.

(2) The statement (2) of Theorem 1.1 is a direct consequence of the statement
(1). In fact, in view of statement (1), for each j ∈ N0, given any ε > 0, there exists
a number N > 0 such that if n > N, one has

(4.24)

kj+1−1∑
m=kj

∣∣Reλmn(ωn)− Reλjm(ω)
∣∣ < kj+1−1∑

m=kj

∣∣λmn(ωn)− λjm(ω)
∣∣ < ε,

where the set {mn : m = kj , · · · , kj+1 − 1} = {m : m = nj , · · · , nj+1 − 1} . Since

Reλjkj (ω) = Reλjkj+1(ω) = · · · = Reλjkj+1−1(ω),

it follows from (4.24) that if n > N, one has

kj+1−1∑
m=kj

∣∣Reλm(ωn)− Reλjm(ω)
∣∣ < ε.

Note that λjm(ω) is the m-th eigenvalue of ω. This arrives the statement (2) of
Theorem 1.1. �

Theorem 1.1 shows that Reλm depends continuously on the coefficients a, b and
distributions ν0, ν1 with respect to a stronger topology than that induced by (1.4).
As consequences of Theorem 1.1, one can deduce the following results (see Corollary
4.5 and Corollary 4.7), which illustrates that the continuity of λm on the coefficients
a, b and distributions ν0, ν1 could be guaranteed in some special situations.

Corollary 4.5. Suppose that ‖an − a‖W 2,2 → 0, ‖bn − b‖W 1,2 → 0, ν0,n
w→ ν0,

ν1,n
w→ ν1, as n→∞.

(1) Let λm0
(ω), m0 ∈ N, be a real eigenvalue of ω with algebraic multiplicity

k + 1. Suppose that

λm0(ω) = λm0+1(ω) = · · · = λm0+k(ω),

Reλm0−1(ω) < Reλm0(ω) < Reλm0+k+1(ω),

then as n→∞, one has

λm(ωn)→ λm(ω), m = m0,m0 + 1, . . . ,m0 + k.

(2) Let λm0
(ω), m0 ∈ N, be an algebraically simple eigenvalue of ω with negative

imaginary part. If

Reλm0−1(ω) < Reλm0(ω) = Reλm0+1(ω) < Reλm0+2(ω),

then for m = m0,m0 + 1, one has λm(ωn)→ λm(ω) as n→∞.

Remark 4.6. Note that Remark 2.8 implies that in the above statement, λm0+1(ω) =

λm0
(ω) and λm0+1(ωn) = λm0

(ωn) for sufficiently large n.

Corollary 4.7. Let λm(ν0, ν1) denote them-th eigenvalue of the problem (1.1) with
constant coefficients a ≡ −1, b ≡ 0. Then for each m ∈ N0, λm(ν0, ν1) is continuous
in the probability distributions ν0, ν1 with respect to the weak topology.

Proof. In the case of a ≡ −1, b ≡ 0, it follows from [6] that all the eigenvalues
of the problem (1.1) are real. Thus the statement of the corollary can be directly
obtained from Theorem 1.1. �
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To conclude the discussion of this section, we give an example to show that
the continuous eigenvalue branch in the sense of Theorem 2.11 is not necessarily
determined by a fixed index.

Example 4.8. Consider the eigenvalue problem with constant coefficients a < 0,
b ∈ R and ν0 = ν1 = δ 1

2
, i.e.,

(4.25)

{
ay′′(x) + by′(x) = λy(x), x ∈ (0, 1),
y(0) = y( 1

2 ) = y(1).

Under the transformation v(x) = exp
(
bx
2a

)
y(x), problem (4.25) is equivalent to the

following eigenvalue problem

(4.26)

{
−v′′(x) + qv(x) = −λav(x), x ∈ (0, 1),
v(0) = Av( 1

2 ) = A2v(1),

where q = 1
4

(
b
a

)2
and A = exp

(
b
−4a

)
. By Lemma 3.3, it is easy to see that λ is

an eigenvalue of the problem (4.25) or (4.26) if and only if

(4.27) ∆1(λ) = det

 A cos

(√
−λa−q

2

)
− 1 A

sin

(√
−λ
a
−q

2

)
√
−λa−q

1−A2 cos
√
−λa − q −A2 sin

√
−λa−q√
−λa−q

 = 0.

Denote the eigenvalues of the problem (4.25) by λm(a, b), m ∈ N0. Assume b > 0 and

|b| < −4
√

3aπ, then each eigenvalue is algebraically simple, and all the eigenvalues
can be ordered as follows according to Remark 3.2,

λ0(a, b) = 0, λ4n+1 (a, b) = −4a (2n+ 1)
2
π2 − b2

4a
,

λ4n+2(a, b) = −16a (n+ 1)
2
π2 − 2b (n+ 1)πi,

λ4n+3(a, b) = −16a (n+ 1)
2
π2 + 2b (n+ 1)πi,

λ4n+4(a, b) = −16a (n+ 1)
2
π2 − b2

4a
, n ∈ N0.

Note that when b < 0 and |b| < −4
√

3aπ, to obtain the arrangement of eigenvalues,
we only need to exchange the order of λ4n+2 and λ4n+3 in the above result.
Moreover, when b = 0, direct calculation yields that

λ0(−1, 0) = 0,

λ4n+1(−1, 0) = −4a (2n+ 1)
2
π2, λ4n+2(−1, 0) = −16a (n+ 1)

2
π2,

λ4n+3(−1, 0) = −16a (n+ 1)
2
π2, λ4n+4(−1, 0) = −16a (n+ 1)

2
π2, n ∈ N0.

From the above results, it is obvious that for each m ∈ N0, as a function of (a, b) ∈
(−∞, 0)× R, λm(a, b) is continuous on the region

Γ1 :=
{

(a, b) ∈ (−∞, 0)× R| |b| < −4
√

3aπ
}
.

This is consistent with the statement of Corollary 4.5.
However, denote Γ2 :=

{
(a, b) ∈ (−∞, 0)× R| |b| = −4

√
3aπ

}
, then it is easy to

see that λ1 and λ2 are discontinuous at each point of Γ2. In fact, when b = −4
√

3aπ,
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all the eigenvalues can be ordered as follows,

λ0(a, b) = 0, λ1 (a, b) = −16aπ2 − 2bπi, λ2 (a, b) = −16aπ2,

λ3 (a, b) = −16aπ2 + 2bπi, λ4 (a, b) = −28aπ2,

λ4n+1 (a, b) = −4a (2n+ 1)
2
π2 − b2

4a
,

λ4n+2(a, b) = −16a (n+ 1)
2
π2 − 2b (n+ 1)πi,

λ4n+3(a, b) = −16a (n+ 1)
2
π2 + 2b (n+ 1)πi,

λ4n+4(a, b) = −16a (n+ 1)
2
π2 − b2

4a
, n ∈ N.

It is easy to see that for each point (â, b̂) ∈ Γ2,

lim
Γ13(a,b)→(â,̂b)

λ1 (a, b) = λ2(â, b̂), lim
Γ13(a,b)→(â,̂b)

λ2 (a, b) = λ1(â, b̂),

lim
Γ13(a,b)→(â,̂b)

λm (a, b) = λm(â, b̂), m ≥ 3.

5. Continuity Dependence of the Spectral Gap on the Coefficients
a, b and Distributions ν0, ν1

Now we turn to study the continuity dependence of the spectral gap on the coeffi-
cients a, b and distributions ν0, ν1 (see Theorem 1.2). We believe that Proposition
5.1, which will be stated first and is needed for the proof of Theorem 1.2, is of
independent interest.

Proposition 5.1. (1) Zero is an algebraically simple eigenvalue of (1.1) ;
(2) All the nonzero eigenvalues of (1.1) have strictly positive real part.

Proof. (1) In view of Remark 2.9, it is easy to verify that zero is an eigenvalue of the
problem (1.1) , with the corresponding eigenfunction being any non-zero constant.
We just need to calculate its algebraic multiplicity. Denote

y′1,λ(x, λ) :=
dy1(x, λ)

dλ
and y′2,λ(x, λ) :=

dy2(x, λ)

dλ
.

Then from Lemma 2.6 one has

∆′(λ) =

∫ 1

0

y′1,λ(x, λ)dν0

∫ 1

0

y2(x, λ)dν1 +

∫ 1

0

y1(x, λ)dν0

∫ 1

0

y′2,λ(x, λ)dν1

−
∫ 1

0

y′1,λ(x, λ)dν1

∫ 1

0

y2(x, λ)dν0 −
∫ 1

0

y1(x, λ)dν1

∫ 1

0

y′2,λ(x, λ)dν0

+y′1,λ(1, λ)

∫ 1

0

y2(x, λ)dν0 + y1(1, λ)

∫ 1

0

y′2,λ(x, λ)dν0

−y′2,λ(1, λ)

∫ 1

0

y1(x, λ)dν0 − y2(1, λ)

∫ 1

0

y′1,λ(x, λ)dν0

−
∫ 1

0

y′2,λ(x, λ)dν1 + y′2,λ(1, λ).

Now we aim to show that ∆′(0) < 0. In fact, direct calculation yields y1(x, 0) =
1 and

y2(x, 0) =

∫ x

0

exp

(
−
∫ t

0

b(s)

a(s)
ds

)
dt.
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Then from Remark 2.2, it follows that

y′1,λ(x, 0) =

∫ x

0

y2(x, 0)y1(t, 0)− y1(x, 0)y2(t, 0)

a(t) exp
(
−
∫ t

0
b(s)
a(s)ds

) dt

=

∫ x

0

[y2(x, 0)− y2(t, 0)]
exp

(∫ t
0
b(s)
a(s)ds

)
a(t)

dt.

Hence

∆′(0) =

∫ 1

0

y′1,λ(x, 0)dν0

∫ 1

0

y2(x, 0)dν1 −
∫ 1

0

y′1,λ(x, 0)dν1

∫ 1

0

y2(x, 0)dν0(5.1)

+y′1,λ(1, 0)

∫ 1

0

y2(x, 0)dν0 − y2(1, 0)

∫ 1

0

y′1,λ(x, 0)dν0.

Therefore, in order to prove ∆′(0) < 0, it is sufficient to prove

(5.2)

∫ 1

0
y2(x, 0)dν0(x)∫ 1

0
y′1,λ(x, 0)dν0(x)

<
y2(1, 0)−

∫ 1

0
y2(x, 0)dν1(x)

y′1,λ(1, 0)−
∫ 1

0
y′1,λ(x, 0)dν1(x)

.

Note that

y′1,λ(1, 0)

∫ 1

0

y2(x, 0)dν0(x)− y2(1, 0)

∫ 1

0

y′1,λ(x, 0)dν0(x)(5.3)

=

∫ 1

0

y2(x, 0)

∫ 1

0

[y2(1, 0)− y2(t, 0)]
exp

(∫ t
0
b(s)
a(s)ds

)
a(t)

dtdν0(x)

−
∫ 1

0

y2(1, 0)

∫ x

0

[y2(x, 0)− y2(t, 0)]
exp

(∫ t
0
b(s)
a(s)ds

)
a(t)

dtdν0(x)

=

∫ 1

0

∫ 1

x

[y2(1, 0)− y2(t, 0)] y2(x, 0)
exp

(∫ t
0
b(s)
a(s)ds

)
a(t)

dtdν0(x)

+

∫ 1

0

∫ x

0

[y2(1, 0)− y2(x, 0)] y2(t, 0)
exp

(∫ t
0
b(s)
a(s)ds

)
a(t)

dtdν0(x)

< 0,

and similarly,

(5.4) y′1,λ(1, 0)

∫ 1

0

y2(x, 0)dν1(x)− y2(1, 0)

∫ 1

0

y′1,λ(x, 0)dν1(x) < 0.

Therefore, (5.3) and (5.4) yield that∫ 1

0
y2(x, 0)dν0(x)∫ 1

0
y′1,λ(x, 0)dν0(x)

<
y2(1, 0)

y′1,λ(1, 0)
<

y2(1, 0)−
∫ 1

0
y2(x, 0)dν1(x)

y′1,λ(1, 0)−
∫ 1

0
y′1,λ(x, 0)dν1(x)

.

This proves (5.2) and thus ∆′(0) < 0 which implies that zero is an algebraically
simple eigenvalue of the problem (1.1).

(2) Let µ be an eigenvalue of the problem (1.1) , and denote the corresponding
eigenfunction by y.
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Step 1: We first show that there exists a point x0 ∈ (0, 1) such that |y(x0)|2 =

M := max
x∈[0,1]

|y(x)|2 . Suppose |y(0)|2 = M. Using the boundary conditions of (1.1)

and the Cauchy-Schwartz inequality, we thus deduce that for each x ∈ [0, 1],

|y(x)|2 ≤ |y(0)|2 =

∣∣∣∣∫ 1

0

y(x)dν0(x)

∣∣∣∣2(5.5)

≤
(∫ 1

0

|y(x)|dν0(x)

)2

≤
∫ 1

0

|y(x)|2 dν0(x).

Thus

(5.6)

∫ 1

0

|y(x)|2 dν0(x) =

(∫ 1

0

|y(x)|dν0(x)

)2

.

This yields that ∫ 1

0

(
|y(x)| −

∫ 1

0

|y(x)|dν0(x)

)2

dν0(x) = 0,

and hence |y(x)| ≡
∫ 1

0
|y(x)|dν0(x) ν0-a.e.

Then it follows from (5.5) that |y(x)|2 ≡ |y(0)|2 = M ν0-a.e. Suppose |y (1)|2 =

M, then similar proof yields that |y(x)|2 ≡ |y(1)|2 = M ν1-a.e. Therefore, we

conclude that there exists a point x0 ∈ (0, 1) such that |y(x0)|2 = M.
Step 2: Note that

l|y|2 = a
(
|y|2
)′′

+ b
(
|y|2
)′

= a (yy)
′′

+ b (yy)
′

(5.7)

= yly + yly + 2a|y′|2 ≤ yly + yly = 2Reµ|y|2.
Assume Reµ ≤ 0, then we have l|y|2 ≤ 0. Thus based on the conclusion in Step 1, we

deduce from maximum principle ([22, Section 6.4, Theorem 3]) that |y(x)|2 ≡ c on
[0, 1] for some constant c, and hence l|y|2 ≡ 0. Therefore, it follows from (5.7) that

Reµ = 0 and |y′(x)|2 ≡ 0. Then it is easy to see that y(x) ≡ c1 on [0, 1] for some
constant c1. Thus µ = 0. Now we can conclude that zero is the only eigenvalue
with non-positive real part. This completes the proof. �

Remark 5.2. In fact, the second part of Proposition 5.1 was given in [2] by a
different method.

Now Theorem 1.2 announced in the introduction follows directly from Proposi-
tion 5.1 and Theorem 1.1. In fact, in view of the meaning of λ1, one easily deduces
from Proposition 5.1 that λ1(ω) (λ1(ωn)) is always the nonzero eigenvalue of the
problem ω (ωn) with the minimal real part. This together with the statement (2)
of Theorem 1.1 clearly implies the assertion of Theorem 1.2.

We conclude this section by a concrete example.

Example 5.3. Denote the spectral gap of the problem (4.25) by γ1(δ 1
2
), i.e.,

γ1(δ 1
2
) := inf {Reλ|λ is an eigenvalue of the problem (4.25) and λ 6= 0 } .

It follows from Example 4.8 that

(5.8) γ1(δ 1
2
) =

{
−4aπ2 − b2

4a , when |b| ≤ −4
√

3aπ,

−16aπ2, when |b| > −4
√

3aπ.
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Then it is obvious that as a function of (a, b) ∈ (−∞, 0)× R, γ1(δ 1
2
) is continuous

on the region (−∞, 0)×R, which is consistent with the statement of Theorem 1.2.
Note that (5.8) is already given in [14] and [13] by different approaches.
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[9] M. Kolb and D. Krejčǐŕık, Spectral analysis of the diffusion operator with ran-
dom jumps from the boundary , Math. Z. 284(2016), 877–900.

[10] M. Kolb and A. Wubker, On the spectral gap of Brownian motion with jump
boundary , Electron. J. Probab. 16(2011), 1214–1237.

[11] E. Kosygina, Brownian flow on a finite interval with jump boundary conditions,
Disc. Cont. Dyn. Syst. Ser. B 6(2006), 867–880.

[12] W. Feller, The parabolic differential equations and the associated semi-groups
of transformations, Ann. of Math. 55(1952), 468–519.

[13] M. Kolb and A. Wubker, Spectral analysis of diffusions with jump boundary ,
J. Funct. Anal. 261(2011), 1992–2012.

[14] I. Ben-Ari, Coupling for drifted Brownian motion on an interval with redistri-
bution from the boundary , Electron. Comm. Probab. 19(2014), 1–11.

[15] A. Zettl, Sturm-Liouville theory, Amer. Math. Soc., Providence, RI, 2005.
[16] J. Dieudonne, Foundations of modern analysis, Academic Press, New York,

1969.
[17] Q. Kong, H. Wu, and A. Zettl, Dependence of the n-th Sturm-Liouville eigen-

value on the problem, J. Differential Equations 156(1999) 328–354.
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