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Abstract: We propose a novel single-image super resolution (SISR) approach using 

self-similarity of image and the low-rank matrix recovery (LRMR). The method performs 

multiple upsampling steps with relatively small magnification factors to recover a desired high 

resolution image. Each upsampling process includes the following steps: First, a set of 

low/high resolution (LR/HR) patch pairs is generated from the pyramid of the input low 

resolution image. Next, for each patch of the unknown HR images, similar HR patches are 

found from the set of HR/LR patch pairs by the corresponding LR patch and are stacked into a 

matrix with approximately low rank. Then, the LRMR technique is exploited to estimate the 

unknown HR image patch. Finally, the back-projection technique is used to perform the global 

reconstruction. We tested the proposed method on fifteen images including humans, animals, 

plants, text, and medical images. Experimental results demonstrate the effectiveness of the 

proposed method compared with several representative methods for SISR in terms of 

quantitative metrics and visual effect.  

Keywords: single-image super-resolution, self-similarity, image pyramid, low-rank matrix 

recovery 

1. Introduction 

Super- resolution (SR) is to construct a high-resolution (HR) image from one or multiple 

low-resolution (LR) images by finding the missing high frequency information caused by the 

limitation of hardware [1]. This problem arises in many application domains, such as computer 

vision, medical imaging, video surveillance, and entertainment.  

SR image reconstruction is an inherently ill-posed problem because an LR image can be 

generated from different HR images. Conventional approaches to SR require multiple LR 

images of the same scene taken at sub-pixel misalignments (multiple-frame image 

super-resolution, MISR). For these methods, prior knowledge is usually used to predict a large 



2 
 

number of unknown pixel values according to the input pixels. The performance of these 

approaches degrades rapidly when the number of input LR images is insufficient and the 

magnification factor of the image is large [2].  

Another class of SR approaches only uses one input LR image (single-frame image 

super-resolution, SISR). The simplest methods for SISR assume that the images are spatially 

smooth, and analytical interpolation formulae, e.g., the bicubic function [3], are used to predict 

missing image details. However, natural images contain strong discontinuities such as texture 

and edges. The analytical interpolation methods often suffer from over-smoothed edges and 

the loss of details in textured regions. 

Example-based SR methods for SISR are based on the assumption that the missing HR 

details can be learned and inferred from a representative training set or the input LR image [4]. 

Some papers propose to form a training set from some extra HR images [5-12] and utilize the 

high-frequency details of HR images in the training set to predict the HR image in terms of the 

input LR image. Freeman et al. pointed out that it was unreasonable to generate the correct 

high-frequency information without restriction to a specific class of training images [5].To 

ensure that the training set is compatible with the missing high-frequency details, 

self-similarity is utilized according to the observation that a smaller image patch tends to 

redundantly recur many times both within the same scale and across scales [13]. Some 

approaches, which do not depend on an extra database of training images, have been proposed 

to use the input LR image as the source for example patches (e.g., [14-17]). For the approaches 

in these papers, the LR/HR patch pairs are generated from the pyramid of the input LR image, 

and then the similar patches are searched from these LR/HR patch pairs by exploiting the 

multi-scale self-similarity. Last, an HR image is synthesized from those similar patches 

incorporating prior knowledge of image.  

The performance of these aforementioned SISR algorithms also depends on the correct 

mapping from LR to HR patches. In fact, some existing approaches, such as linear function 

[18], multiple linear mappings [19], support vector regression[20], kernel ridge regression[21], 

anchored neighborhood regression (ANR) [10], and deep neural network [11, 12], emphasize 

the special mapping relationship between the LR and HR patches.  

An example-based method, called RAISR, differs from the aforementioned methods and 

does not need to learn the mapping from LR to HR patches [22]. Instead, RAISR applied a set 

of pre-learned filters on the image patches to enhance the quality of the computationally very 

cheap interpolation method. The filters have been previously learned based on pairs of LR and 

HR training image patches, and hashing is done by estimating the local gradients’ statistics. 
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The theory of compressed sensing has motivated the research on the sparse 

representation-based image restoration [8, 23, 24]. The compressed sensing-based methods 

depend on the fact that the image patches can be sparsely represented under common basis and 

overcomplete dictionary and assume that these representation coefficients are identically and 

independently distributed, and the correlation between the sparse coefficients can be ignored. 

Recently, simultaneous sparse coding (SSC) [25] has considered the structural correlation in 

the sparse model. Furthermore, several state-of-the-art image restoration techniques were 

proposed, including spatially adaptive iterative singular-value thresholding (SAISVT) [26], 

low-rank matrix recovery and neighbor embedding algorithm (LRNE)[27], and 

block-matching 3D filtering (BM3D) [28]. 

Dong et al. presented an image restoration algorithm toward modeling nonlocal similarity 

in natural images by the singular-value thresholding (SVT) technique and discussed its 

connection with simultaneous sparse coding [26]. Instead of coding each patch individually, 

they simultaneously coded a set of nonlocal similar patches under the dictionary of local 

principle component analysis from the input image. 

Chen et al. proposed an LRNE method based on the low-rank matrix recovery (LRMR) 

and neighbor embedding (NE) algorithm for SISR [27]. Each training patch is put into a group 

with its K nearest neighbors. LRMR is utilized to learn the latent low dimensional subspace for 

LR patches and HR patches of each group, respectively. For the input LR patch, the weights 

over the low dimensional subspace of the nearest LR patches group to this input LR patch are 

computed. According to the structural geometries similarity between the LR images and HR 

images, the NE algorithm is used to reconstruct the missing pixels of HR images from the 

obtained weights and the low dimensional subspace of the corresponding HR patches group. 

The LRNE approach is similar to the one in [8]. Both approaches assume that LR images have 

similar local geometry with HR images. The difference is that the former uses the two 

low-rank structure subspaces instead of the two overcomplete dictionaries of the latter. 

In this paper, we propose a method on SISR, called LRSE, which performs multiple 

upsampling steps of relatively small magnification factors gradually to achieve the desired SR 

image without any external database. Our method is inspired by the success of the low-rank 

matrix recovery and the self-similarity of images for SISR. In our approach, a set of LR/HR 

patch pairs is first generated from the pyramid composed of different scale images of the input 

LR image. Based on the self-similarity of images and the scale invariance property of image 

singularities and for each unknown HR patch, we search its similar HR patches from the set of 

LR/HR patch pairs. Because these similar HR patches form an approximate low-dimensional 
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subspace, we utilize the LRMR technique to get the true low-dimensional subspace of these 

similar HR patches. Finally, the low-rank component of this subspace is exploited to recover 

the unknown HR patch. 

The core idea of the proposed method is to find the low-dimensional (LD) subspace of 

some similar HR patches to an unknown HR patch using the LRMR algorithm, then utilize this 

LD subspace to recovery the unknown HR patch. Our method shares the same strategy with 

LRNE [27] where the LRMR technique is also used to gain the LD subspace of similar image 

patches. But there are three differences between LRNE and our method. First, we utilized the k 

nearest neighbor algorithm to find the similar LR/HR patch pairs inside image, both within the 

same scale and across different scales, in terms of the LR patch corresponding to the unknown 

HR one. Our method does not need any extra training database. Second, only the matrix made 

up of similar HR patches is decomposed by LRMR in our method, whereas the matrix made up 

of similar LR patches also need to be decomposed in LRNE. Third, the weighted coefficients 

of the low-rank component of matrix to recover the unknown HR patch are computed by the 

similarity degree of the corresponding LR version.  

2. The Proposed Method 

This section describes the details of our method based on the self-similarity of natural 

images and the low-rank matrix recovery. 

2.1 Generating the Set of LR/HR Patch Pairs 

Assuming that an observed LR image L is a blurred and downsampled version of the 

unknown HR image H , 

( )
S

L D H B=                 (1) 

where B is an isotropic Gaussian kernel with the variance 2 , 
S

D denotes a downsampling 

operator with scale factor S , and *is a convolution operator. The observed LR image and the 

unknown HR image are viewed as our input LR image and the corresponding target HR image, 

respectively. 

Let
i

I denote an unknown HR image with the small magnification factors i

i
R s=  from the 

image L  using Gaussian kernel 
i

B  with variance 2

i
  ( 1 2i , ,...,n= ), where s is a constant,

 
log( ) log( )n S / s=  that denotes the number of HR images to be reconstructed for obtaining the 

target HR image H . Thus
i

I satisfies: 

( )
iR i i

L D I B=   ( 1 2i , ,...,n= )        (2) 
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where
iR

D denotes a downsampling operator with scale factor
i

R . Yang et al. [16] proved the 

proposition that for any two downsampled images ( )
n ii R n i

I D H B
− −

=  and ( )
n jj R n j

I D H B
− −

=  of 

the image pyramid, the variances of their Gaussian kernels are related by

2 2 log( ) / log( )
i j n i n j

R R 
− −

=  . According the aforementioned proposition, we can know that

2 2 ( )
i

n i / n =  − . The yellow images represent the sequence of unknown HR images in Fig. 1.  

For obtaining the set of LR/HR patch pairs, a sequence of LR images
1 2 m

I ,I ,...,I
− − −

 is 

generated from L through the following degradation process using the same blur Gaussian 

kernel
i

B : 

( )
ii R i

I D L B
−
=   ( 1 2i , ,...,m= )            (3) 

For convenience, let
0

I L= . The blue images represent the sequence of LR images in Fig. 1. 

 

Fig.1. Pyramid of input image and similar LR/HR patch pairs. The light pink squares represent the similar LR 

patches of the dark pink square 1

H
P , and the light green squares represent the similar patches of the dark green square

1

L
P , respectively. 

The above degraded images 
1 2 1m

I ,I ,...,I
− − − +

and 
0

I  are all subdivided into small patches in 

raster-scan order. For each patch 
i

P
−

 in 
i

I
−

( 0 1 2 1i , , ,...,m= − ), its corresponding LR patch 

( 1)i
P
− +

 is computed from the blurred image
0 1i

I B
+

 with decreasing resolution by the scale factor 

1is + . The LR patch
( +1)i

P
−

and its HR version
i

P
−

form a LR/HR patch pair. A green patch and a 

pink one connected by a line form a LR/HR patch pair in Fig. 1. 

The set of LR/HR patch pairs includes all the LR/HR patch pairs. Note that the LR 
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patches in the HR/LR patch pair of our approach are different from those in [8, 16, 17] that are 

the bicubic interpolation-based upsampled versions of the LR patch. In [14] and our methods, 

the position of the corresponding LR version of each unknown HR patch in known LR image 

can be calculated by the blur kernel, and then the corresponding LR version can be obtained 

instead of using the bicubic interpolation-based upsampled versions. While the LR/HR patch 

pairs are different from those in [14], the LR/HR patch pairs in our method are from two 

adjacent scale images with the same blur kernel. Meanwhile, those patch pairs in [14] may 

come from two images with different scale gaps, so that LR/HR patch pairs with different 

scale gaps will have different supports. 

Subsequently, these LR/HR patch pairs are used to estimate the unknown HR image
1

I by 

a reconstruction method that will be introduced in Section 2.2. Once the image
1

I  is obtained, 

the set of LR/HR patch pairs is updated by combining the existing set of LR/HR patch pairs 

with all the LR/HR patch pairs obtained from the image
1

I  and its corresponding LR version

0
I . Then the unknown HR image

2
I is estimated by this new set of LR/HR patch pairs. This 

process is repeated until the target HR image H is obtained.   

2.2 Estimating HR Patches Using Low-Rank Matrix Recovery Technique 

Based on the idea of [26] that exploits the dependencies among similar patches to 

estimate their low-dimensional subspace by the SVT algorithm, we estimated the unknown HR 

patches from the set of generated LR/HR patch pairs for the input LR patch using the LRMR 

technique. The details are described as follows. 

Let i

H
P denote a small patch of the unknown HR image 

i
I (1 )i n  (provided that the 

images
1 1i

I ,...,I
−

have been obtained). First, the corresponding LR version i

L
P  of i

H
P is 

computed according to the position of i

H
P . Then the approximate nearest neighbor search [29] 

is used to search K nearest LR patches
1

{ }i K

Lk k
N

=
of i

L
P  from the set of LR/HR patch pairs. The 

corresponding HR patch i

H k
N of the k-th nearest LR patch i

L k
N  is viewed as the k-th similar 

patches of i

H
P . Fig. 1 shows an example of the similar LR/HR patch pairs 

These K similar HR patches in 1
{ }i K

H k k
N

= are stacked as columns of a matrix A in ascending 

order of the distance between the corresponding LR patch
1

{ }i K

Lk k
N

=
and the LR patch i

L
P . All 

columns in A are the K nearest neighbors of the unknown HR patch i

H
P  and they have similar 

structures. Therefore, the matrix A has a low rank property and can be viewed as an 

approximate low rank matrix. The LRMR technique is used to decompose A into a low-rank 

matrix and a sparse matrix, where the low-rank matrix naturally corresponds to the true LD 

subspace of these similar HR patches and the sparse matrix represents the specifics of each HR 

patch and noise. The above decomposition can be formulated as the following convex 
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optimization problem, 

2 1
min

l s
l s

A ,A
A A

，



+                  (4) 

s.t.  
l s

A A A= +  

where
l

A is a low-rank matrix,
s

A is a sparse matrix and is a positive weighting parameter, let

0 2. = in our method. 


 denotes the nuclear norm of a matrix (i.e., the sum of its singular 

values). The nuclear norm was adopted to enforce the low rank property of
l

A .
2 1


，
denotes the 

sum of thel2 norm of each row vector of a matrix. The l2,1 norm, which is rotation invariant 

compared with the traditional 
1
l  

norm [30], was used as regularization terms to impose the 

sparsity of matrix
s

A .The advantages of l2,1 norm regularization are that it can select features 

across all data points with joint sparsity, and have better performance effect in feature 

selection[31], classification [32], and so on. We used the inexact augmented Lagrange 

multipliers (ALM) algorithm [33] to solve the above optimization problem (4) which is 

referred to as Robust PCA (RPCA) [34]. 

The low-rank matrix decomposition does not change the identities of columns, so that the 

k-th column of matrix
l

A , denoted by
l k

A , is the low-rank component of i

H k
N that is the k-th 

nearest neighbor of i

H
P .The weighted average of all the columns of

l
A is reshaped to a small 

matrix as an estimate of pixels of the unknown HR image patch i

H
P . The weight of the k-th 

column is defined as

2

21
i i

L L k
F

P N

h

k
w e

Z

−
−

= , where Z is the normalizing constant

2

2

i i
L L k

F
P N

h

k

Z e

−
−

= , and 

the parameter h controls the decay of the exponential function. The closer the found similar LR 

patches i

L k
N  are to the corresponding LR version i

L
P  of i

H
P , the large the weights of columns

l k
A that correspond to i

L k
N are. The basic step to generate the unknown HR patch is illustrated in 

Fig. 2. 

After all patches of the unknown HR image
i

I are obtained, the initial image of
i

I is 

generated by simply averaging the pixels in the overlapped regions. 

2.3 Enforcing Global Reconstruction Constraint 

The target HR image is gradually synthesized with a relative magnification factor s . To ensure 

that the obtained HR image
i

I in each upsampling process is consistent with the input LR 

image L , the back-projection technique [8] is used to project the initial image onto the input 

LR image L . Let 0

i
I denote the initial image of

i
I . The final reconstructed image is obtained 

from: 
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2 2
0argmin

i
i

i R i i i i FFI
I D B I L I I = − + −          (5) 

where
iR

D is the downsampling matrix, 
i

B is the blurring matrix, and is a balancing parameter. 

The solution of the optimization problem (5) can be obtained by gradient descent with the 

following iterative update rule: 

1 0( +
i i

t t T T t t

i i i R R i i i i
I I B D L D B I I I +  = + − − ）（ ）

    
(6) 

where t

i
I is the estimate of the HR image

i
I after the t-th iteration, and is the step size of the 

gradient descent. The optimal solution
i

I   is used as the final estimate of the HR image
i

I . This 

image is not only as close as possible to the initial estimate image 0

i
I also satisfies the global 

reconstruction constraint.  

 

 

Fig. 2. The flowchart of our approach for generating the unknown HR patch. The constant scale factor s is set 1.25 

in our algorithm and the sizes of HR image patch and LR one are 5 5 and 4 4 , respectively. 

 

After obtaining the n-th unknown HR image
n

I , if the size of the HR image
n

I is larger 

than the desired HR image, it will need to be downsampled to the desired size. The complete 

framework of our algorithm is summarized as Algorithm 1. 

3 Numerical Experiments 

3.1 Experimental Setup 

We did three experiments to demonstrate the effectiveness of the proposed method. In the 

first two experiments, we selected ten images from the software package which is available on 

the website http://www.ifp.illinois.edu/~jyang29/ScSR.htm1 as original HR images (Fig. 3). 

The original HR images were degraded into LR versions by bicubic interpolation or  

http://www.ifp.illinois.edu/~jyang29/ScSR.htm1
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Algorithm 1:  SR via Self-Similarity and Low-Rank Matrix Recovery 

1．Input: LR image L , magnification factor S , Gaussian kernel variance 2 , the number of nearest neighbors

K , back-projection loop number T , the step size of the gradient descent , the number of 

downsampled LR images m , the number of upsampled unknown HR images n . 

2．//Constructing the pyramid of image L // 

Set 0
I L= ; 

For 1 2i , ,..,m=  do 

Compute convoluted image i
C

− by i
L B ; 

Compute LR image i
I
− by ( )

iR i
D C

−
; 

End 

3．//Generating the Set of LR/HR Patch Pairs// 

For 0 1 1i , ,...,m= −  do 

For each 5 5  patch i
P
− in i

I
−  do 

       Compute the corresponding region i
E

− in 
( 1)i

C
− +

; 

Compute
( 1)i

P
− +

by ( )
iR i

D E
−

; 

Save patch pair 
( 1)

( )
i i

P ,P
− − +

 into the set of HR/LR patch pairs Q ; 

End 

End 

4．//Estimating the unknown HR images // 

For 1i ,...,n=  do 

//Estimating the unknown HR image i
I with magnification factor 1.25// 

     For each 5 5  patch i

H
P in i

I  do 

Compute the corresponding LR patch i

L
P in 1i

I
− ; 

Search K nearest LR patches of i

L
P of in the set Q , the corresponding K HR patches construct a 

matrix A; 

Decompose A into a low-rank matrix l
A  and a sparse matrix s

A with ALM; 

Reshape the weighted average of all the columns of l
A to 5 5  matrix as an estimate of pixels of

i

H
P ; 

     End 

     Generate 0

i
I by simply averaging the pixels in the overlapped regions; 

     Use the back-projection technique to reconstruct the unknown HR image i
I ; 

     Update the set of HR/LR patch pairs Q ; 

End 

5．If the size of HR image n
I is larger than the desired HR image, do 

Generate the desired HR image H by downsampling n
I ;  

End 

6.  Output SR image H . 

 

Gaussian blur kernels with standard deviation one which is introduced in [35]. In the third 

experiment, medical image Chest, text image Eyetest, animal image Zebra, plant image 

Flowers and human image Baby were used to test the performance of the proposed method 

from the view of visual effect. Because humans are more sensitive to luminance component, 

we only performed image super resolution on the luminance component of color images, and 
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the chromaticity fields were upsampled by bicubic interpolation. 

For comparison, several representative SISR methods: bicubic interpolation (BI), sparse 

coding SR algorithms (SCSR) [8], self-exemplar SR algorithms(SESR) [14], anchored 

neighborhood regression (ANR) [10], deep convolutional neural network (SRCNN) [11], a 

rapid and accurate image super resolution (RAISR) [22] and LRNE[27] were implemented. 

The SCSR, ANR, SRCNN, RAISR and LRNE use external database for the set LR/HR patch 

pairs, whereas our method does not use any external database. We compared our approach 

with SESR, because both approaches gradually reconstruct HR image from only the input LR 

image without using external database and both exploit the multi-scale self-similarity property 

of images. The reason that we made comparisons between LRNE and our method is that both 

of them use the LRMR technique for SISR. 

 

 

 

Fig.3. Original HR images in the first two experiments 

3.2 The implementation of our proposed algorithm 

We implemented our algorithm in MATLAB R2013, where the approximate nearest 

neighbor (ANN) search was implemented using the software developed by Mount et al.[36] 

and Bagon et al. [37] and the ALM algorithm’s codes developed by Lin [33] were adopted.  

In the proposed algorithm, the patch size was set to 5 5 , the overlapping size was set to 4, 

the back-projection loop number =3T  and the step size of the gradient descent =1 . To avoid 

producing images with insufficient resolution, the number of the downsampled LR images 

from the input LR image was set to 3.The number of generated HR images was

log( ) log( ) 1n S / s= +   , wherein S is the magnification factor for the target HR image, and s  is 

set to 1.25 which is same as one in [14]. The parameter h that controls the decay of the 

exponential function in computing weights was set to 100.  
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The value of neighbor size K plays an important role in k-nearest neighbor. To investigate 

how the neighborhood size affects performance of our algorithm, our algorithm was 

implemented by tuning the neighborhood size from 8 to 24 with step of 4. It was observed that 

the reconstruction quality of the proposed algorithm is best when K is 16. 

Table 1. The PSNR (dB) and SSIM values of the reconstructed HR images using different methods with a 

magnification factor of 3. The input images were downsampled from the initial HR image using bicubic 

interpolation. Results from [27] were directly used. 

Images BI SCSR SESR ANR SRCNN RAISR LRNE  Our method 

Bike 
22.808 24.008 24.360 23.978 24.622 23.906 23.121 24.479 

0.6832 0.7565 0.7737 0.7529 0.7799 0.7422 0.7499 0.7773 

Butterfly 
24.053 26.172 28.065 25.912 27.801 25.570 26.224 28.101 

0.7922 0.8753 0.8985 0.8696 0.9031 0.8186 0.8780 0.8987 

Flower 
27.456 28.708 29.137 28.671 29.279 28.628 28.291 29.176 

0.7753 0.8224 0.8361 0.8193 0.8349 0.8173 0.8177 0.8381 

Girl 
32.699 33.416 33.287 33.435 33.517 33.457 33.018 33.427 

0.7275 0.7275 0.7493 0.7175 0.7219 0.7529 0.8080 0.7532 

Hat 
29.197 30.492 31.221 30.365 30.965 30.145 30.419 31.225 

0.8003 0.8337 0.8432 0.8360 0.8406 0.8160 0.8305 0.8433 

Leaves 
23.452 25.346 27.536 25.398 26.604 25.216 25.161 27.502 

0.7654 0.8652 0.9157 0.8624 0.9034 0.8393 0.8597 0.9184 

Lena 
30.099 31.329 31.871 31.255 32.129 31.245 32.714 31.906 

0.8137 0.8320 0.8451 0.8264 0.9034 0.8338 0.9618 0.8471 

Parrots 
28.096 29.608 29.806 29.360 30.447 29.681 28.973 30.030 

0.8715 0.8986 0.8971 0.8957 0.9065 0.8885 0.8942 0.8999 

Parthenon 
26.040 26.722 27.143 26.595 27.142 26.519 26.517 27.151 

0.6739 0.7117 0.7274 0.7196 0.7273 0.7013 0.7157 0.7286 

Plants 
31.085 32.281 33.424 32.589 33.522 32.494 32.315 33.616 

0.8507 0.8531 0.8639 0.8700 0.8822 0.8471 0.8906 0.8640 

Average 
27.4985 28.8082 29.5850 28.7558 29.6028 28.6861 28.6753 29.6613 

0.7754 0.8176 0.8350 0.8169 0.8403 0.8057 0.8406 0.8369 

 

We used the source codes online at http://www.ifp.illinois.edu/~jyang29/ScSR.htm1for 

SCSR, http://www.vision.ee.ethz.ch/-timofter/ for ANR, http://mmlab.ie.cuhk.edu.hk/projects 

/SRC.html for SRCNN and https://github.com /HerrHao/RAISR for RAISR.The code for 

SESR algorithms is available at website https://eng.ucmerced.edu/people/cyang35. We used 

the dictionaries or model parameters in the source code for SCSR, ANR and SRCNN. The 

filter matrix in RAISR was trained using the sixty-nine training images in software package 

that can be found on http://www.ifp.illinois.edu/~jyang29/ScSR.htm1.  

3.3Experimental Results 

Each algorithm was evaluated by computing peak signal to noise ratio (PSNR) and 

structural similarity (SSIM). The PSNR index is defined as 2

10
10log (255 )/ MSE , where MSE 

is the mean square error between the original image and the generated SR image. The SSIM 

http://www.ifp.illinois.edu/~jyang29/
http://www.vision.ee.ethz.ch/-timofter/
http://mmlab.ie.cuhk.edu.hk/projects/%20SRC%20NN.html
http://mmlab.ie.cuhk.edu.hk/projects/%20SRC%20NN.html
https://eng.ucmerced.edu/people/
http://www.ifp.illinois.edu/~jyang29/ScSR.htm1
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index is a full reference metric that is a dimensionless score ranging from zero to one. Higher 

the SSIM value is, more similar the reconstructed image is to the original image in structure 

[38]. 

First, since the input LR images were downsampled by bicubic interpolation from ten 

color original HR images (Fig. 3) with scale factor of 3 in [27], we generated the input LR 

images in the first experiment as in [27]. 

 

Table 2. The PSNR and SSIM values ofthe reconstructed HR images by different methods with a magnification 

factor of 3. The input images were downsampled from the initial HR image using Gaussian blurring. 

Images BI SCSR SESR ANR SRCNN RAISR Ourmethod 

Bike 
22.660 23.723 23.866 23.831 24.221 23.735 24.069 

0.6778 0.7466 0.7622 0.7476 0.7672 0.7390 0.7664 

Butterfly 
23.750 25.723 27.067 25.678 27.052 25.443 27.384 

0.7906 0.8501 0.8842 0.8721 0.8955 0.8217 0.8874 

Flower 
27.261 28.421 28.581 28.473 28.910 28.473 28.782 

0.7710 0.8165 0.8294 0.8162 0.8278 0.8147 0.8316 

Girl 
32.544 33.238 32.935 33.311 33.344 33.341 33.201 

0.7238 0.7481 0.7472 0.7134 0.7165 0.7488 0.7498 

Hat 
29.076 30.192 30.806 30.159 30.598 29.934 30.868 

0.8004 0.8254 0.8364 0.8342 0.8359 0.8148 0.8373 

Leaves 
23.139 24.950 26.146 25.125 25.951 25.003 26.425 

0.7882 0.8539 0.9090 0.8615 0.8919 0.8279 0.9101 

Lena 
29.739 31.035 31.263 31.087 31.729 31.101 31.444 

0.8116 0.8338 0.8364 0.8252 0.8252 0.8325 0.8394 

Parrots 
27.873 29.239 29.310 29.229 30.097 29.571 29.666 

0.8691 0.8893 0.8900 0.8941 0.9028 0.8874 0.8951 

Parthenon 
25.917 26.471 26.681 26.406 26.855 26.334 26.762 

0.6724 0.7056 0.7232 0.7147 0.7330 0.6970 0.7224 

Plants 
30.865 32.281 32.709 32.389 32.839 32.368 32.993 

0.8485 0.8531 0.8469 0.8687 0.8776 0.8461 0.8525 

Average 
27.2824 28.5273 28.9364 28.5688 29.1596 28.5303 29.1594 

0.77534 0.81224 0.82649 0.81477 0.82734 0.80299 0.82920 

 

Table 1 describes the PSNR and SSIM values of the reconstructed HR images using 

different methods. The qualities of the reconstruction using SESR, SRCNN and our method 

are significantly better than BI, SCSR, ANR and LRNE in terms of PSNR. Furthermore, the 

average PSNR improvements are 0.0585dB, 0.0763dB and 0.986dB for our method against 

SRCNN, SESR and LRNE, respectively. Particularly the maximum of PSNR improvements is 

up to 2.286 dB for LRNE. On the other hand, the results of SESR, SRCNN, LRNE and the 

proposed method outperform those of BI, SCSR, ANR and RAISR in terms of average SSIM 

values. The average SSIM improvement is 0.0037 for our method against LRNE. Based on the 

above analysis, it is showed that the proposed method is more effective than the other methods 

in terms of PSNR, and has similar restoration quality to SESR, SRCNN and LRNE in terms of 
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SSIM for the input images downsampled from the initial HR image using bicubic interpolation 

with a magnification factor of 3. 

Secondly, we further demonstrated the utility of the proposed method on the LR images 

downsampled by Gaussian blurring. The LR images were generated from the test images by 

Gaussian kernel with a standard deviation 1. The code of downsampled image is available at 

website https://eng.ucmerced.edu/people/cyang35. 

 

Table 3 The PSNR and SSIM values ofthe reconstructed HR images by different methods with a magnification 

factor of 4. The input images were downsampled from the initial HR image using Gaussian blurring. 

Images BI SCSR SESR ANR SRCNN RAISR Ourmethod 

Bike 
21.459 21.542 21.324 21.870 21.850 21.671 21.742 

0.5908 0.6188 0.6329 0.6373 0.6534 0.6201 0.6549 

Butterfly 
22.202 22.714 22.952 23.085 23.793 22.781 23.588 

0.7174 0.7287 0.7988 0.7777 0.8163 0.7152 0.8131 

Flower 
25.881 25.953 25.746 26.233 26.314 26.077 26.227 

0.6992 0.7124 0.7296 0.7232 0.7347 0.7143 0.7451 

Girl 
31.398 31.334 30.786 31.628 31.599 31.569 31.245 

0.6828 0.6905 0.6833 0.6559 0.6577 0.6929 0.6948 

Hat 
27.881 28.037 28.224 28.331 28.537 27.967 28.554 

0.7613 0.7571 0.7782 0.7796 0.7754 0.7485 0.7859 

Leaves 
21.275 21.671 21.317 22.127 21.879 21.820 21.844 

0.6861 0.7117 0.7923 0.7341 0.7864 0.7073 0.8057 

Lena 
28.533 28.624 28.435 28.983 29.364 28.905 29.004 

0.7625 0.7574 0.7626 0.7578 0.7710 0.7642 0.7788 

Parrots 
26.431 26.589 26.165 26.685 26.840 26.795 26.737 

0.8328 0.8347 0.8373 0.8478 0.8512 0.8362 0.8502 

Parthenon 
24.909 24.856 24.685 24.883 25.116 24.834 25.120 

0.6138 0.6256 0.6408 0.6395 0.6569 0.6202 0.6474 

Plants 
29.340 29.537 29.506 29.939 30.049 29.699 30.124 

0.7984 0.7667 0.7645 0.7930 0.7979 0.7650 0.7832 

Average 25.9309 26.0857 25.914 26.3764 26.5341 26.2118 26.4185 

0.71451 0.72036 0.74203 0.73459 0.75009 0.71839 0.75591 

 

Tables 2 and 3 list the PSNR and SSIM values of the reconstructed HR images using 

different methods with magnification factor of 3 and 4 (except for LRNE), respectively. We 

did not make comparison with LRNE in this experiment since there is no result with Gaussian 

blurring in [27]. 

The PSNR values of our approach are obviously higher than SCSR, ANR and RAISR 

algorithms only except image Girl, respectively. Our method slightly outperforms SESR on all 

ten test images in PSNR. While the average PSNR values of our method and SRCNN are 

almost equal to 29.159, and higher than other five algorithms. According to the SSIM index, 

the average SSIM value of our method is highest among all seven algorithms. Note that SESR, 

https://eng.ucmerced.edu/people%20/
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SRCNN and our method obtain similar average SSIM values. Especially, the SSIM values of 

our approach are higher than RAISE on all test images. In addition, our approach is superior to 

SESR except Parthenon and to SCSR and ANR algorithms except Plants (see Table2). 

Table 3 shows that our approach obtains better results than BI, SCSR, SESR, AIR and 

RAISR in terms of average PSNR, and our approach outperforms all other six methods in 

terms of average SSIM. The PSNR values obtained by our approach are higher than the other  

 

 

 
Fig.4. Comparison of the proposed method with the other methods on medical image Chest (magnified×3). Top row: 

BI (24.288/0.7108), SCSR(25.269/0.7719), SESR (25.285/0.7826); Middle row: ANR (25.190/0.7559), SRCNN 

(25.445/0.7786); Bottom row :RAISR (25.544/0.7789) and our method (25.391/0.7832).  

algorithms on image Hat, Parthenon and Plants. SRCNN can obtain the highest PSNR values 

on image Butterfly, Flower, Lena and Parrots. ANR is superior to the other algorithms on 

image Bike, Girl, Leaves in terms of PSNR. As we can see, our approach can obtain the 
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highest SSIM values on image Bike, Flower, Girl, Hat, Leaves and Lena. SRCNN obtain the 

highest SSIM values on other four images. 

The above analyses show that our algorithm and SRCNN are the most competitive among 

all seven methods on the input images downsampled by both bicubic interpolation and 

Gaussian blurring with a magnification factor of 3, according to quantitative measures in  

 

 

 

Fig. 5. Comparison of our method with the other methods on text image Eyetest (magnified ×3). Top row: BI 

(18.961/0.7955), SCSR (20.309/0.8319), SESR (22.713/0.9179); Middle row: ANR (20.005/0.8235), SRCNN 

(22.1019/0.8836); Bottom row: RAISR (20.143/0.8194) and our method (23.126/0.9225).  
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PSNR and SSIM. In the meanwhile, for the input images downsampled by Gaussian blurring 

with a magnification factor of 4, ANR, SRCNN and the proposed approach are better than other 

four ones in terms of PSRN. According to SSIM, SRCNN and our methods obviously 

outperform other five algorithms.  

We assessed the visual quality of the proposed method based on medical images Chest, 

text image Eyetest, plant image Flowers, animal image Zebra and human image Baby. The  

 

 

 

Fig. 6. Comparison of our method with the other methods on plant image Flowers (magnified ×3). Top row: BI 

(25.097/0.7480), SCSR (26.299/0.7795), SESR (26.458/0.7803); Middle row: ANR (26.373/0.7854), SRCNN 

(26.922/0.7905); Bottom row: RAISR (26.228/0.7717) and our method (26.697/0.7883).  

original HR images were downsampled by Gaussian kernel with variance 1 under scale factor 3. 

The visual effects of our method are obviously better than BI, SCSR, ANR and RAISR, and 
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similar visual effect as SESR and SRCNN, although the PSNR and SSIM values of these three 

methods are different (Figs. 4-8). These three better algorithms (SESR, SRCNN and the 

proposed algorithms) can produce sharper edges, especially SESR. The reconstructed images by 

BI are all very blurred. SCSR results in block artifacts and strong ring in the end of smaller 

branches in Chest (Fig. 4), the leaves and small flowers in Flowers (Fig. 6) and the leg and head 

of Zebra (Fig. 7).  

 

 

 

 

Fig. 7. Comparison of our method with the other methods on animal image Zebra (magnified ×3). Top row: BI 

(24.0301/0.7742), SCSR (26.115/0.8356), SESR (26.180/0.8473); Middle row: ANR (26.156/0.8405), SRCNN 

(26.567/0.8429); Bottom row: RAISR (26.464/0.8379) and our method (26.587/0.8547).  

The images generated by ANR and RAISR are blurred in Chest, Flowers and Zebra (Figs. 

4, 6, 7). For the text image Eyetest, the PSNR value of our method is significantly higher than 

the other six methods. The images reconstructed by SESR and our method are clearer than the 

other five methods on the letters of the last five lines (Fig. 5).  

To summarize, we demonstrated that the proposed method, compared with SCSR, LRNE, 

ANR and RAISR, is more efficient, especially for the images with very similar image patches 
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(e.g. image Butterfly, Leaves, Hat, Plants and Eyetest). The reason lies in that there are some 

patches which recur within and across scales of image, so that self-similarity and SSC strategy 

play their part in our method. In contrast to SESR, the reason that our method outperforms 

SESR is that the LRMR based on similar patches can find the latent structure of subspace which 

the HR patches belong to and can remove the noise. In a word, the effectiveness of our method 

is attributed to the exploitation of both self-similarity of image and LRMR. 

 

 

 

 

 

Fig. 8. Comparison of our method with the other methods on human image Baby (magnified ×3). Top row: BI 

(31.797/0.8295), SCSR (32.707/0.0.8569), SESR (32.125/0.8530);Middle row: ANR (32.8012/0.8559), SRCNN 

(32.746/0.8561); Bottom row: RAISR (32.823/0.8601) and our method (32.545/0.8602).  

 

3.4Comparisons of Computation Times 
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We further compared the proposed method and other five methods (except BI) in terms of 

the CPU time. The SCSR, SESR, ANR, SRCNN, RAISR and our method require 400s, 187s, 

91s, 19s, 38s, and 289s, respectively, to reconstruct an image of 256*256 pixels with a scaling 

factor of 3 on an Intel Core 2 Quad CPU with 2.67 GHz. The SCSR, ANR, SRCNN and RAISR 

algorithms need considerable extra time to train the LR/HR dictionaries or parameters of model. 

The above computation times of these four algorithms do not include their training times. The 

SESR and our method do not need to take any extra time to train the model. The proposed 

algorithm runs a longer time than other five algorithms, but the cost is tolerable in general, in 

particular compared to the gains in the effectivenessin the enhancement of resolution. 

 

4. Conclusions  

In this paper, we presented an algorithm exploiting the self-similarity of image and the 

low-rank matrix recovery for SISR. For obtaining an SR image, the scheme is developed to 

gradually magnify the LR input image to the desired size of HR image. Experimental results 

demonstrate the effectiveness of the proposed method compared with several representative 

SISR methods in terms of both quantitative metrics and visual effect. Our method works best on 

the image with more similar image patches within and across scales of image. One of the future 

research directions will be to improve the runtime of algorithm and apply our method to 

reconstruct SR-MRI from undersampled k-space data. 
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