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Abstract

In hyperspectral images, some spectral bands suffer fremsignal-to-noise ratio due to noisy acquisition and atrhesic
effects, thus requiring robust techniques for the unmiximgblem. This paper presents a robust supervised specinailxing
approach for hyperspectral images. The robustness isvachiey writing the unmixing problem as the maximization oé th
correntropy criterion subject to the most commonly usedstraits. Two unmixing problems are derived: the first peatbl
considers the fully-constrained unmixing, with both thenmegativity and sum-to-one constraints, while the secomel deals
with the non-negativity and the sparsity-promoting of thaeredances. The corresponding optimization problems dvedaosing an
alternating direction method of multipliers (ADMM) appiea Experiments on synthetic and real hyperspectral imeagjetate the
performance of the proposed algorithms for different siesademonstrating that the correntropy-based unmixiitg WDMM

is particularly robust against highly noisy outlier bands.

Index Terms

Correntropy, maximum correntropy estimation, alterrgtirection method of multipliers, hyperspectral imagenixing problem.

I. INTRODUCTION

Pectral unmixing is an essential issue in many disciplimesduding signal and image processing, with a wide range of
Sapplications, such as classification, segmentation, maidentification and target detection. Typically, a hygmectral
image corresponds to a scene taken at many continuous armvnaands across a certain wavelength range; namely, each
pixel is a spectrum. Assuming that each spectrum is a mixtdreeveral pure materials, the unmixing problem consists
in two tasks: (i) identifying these pure materials (the stledd endmembejs (ii) estimating their proportions (the so-called
abundancesat each pixell[l]. In practice, these two steps can be pmedreither sequentially or simultaneously [2]. Well-
known endmember extraction algorithms include the puxrelgiased onese.g, the vertex component analysis (VCA) [3]
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and the N-FINDR[[4], as well as the minimum-volume-basedspagy, the minimum simplex analysi§|[5] and the minimum
volume constrained nonnegative matrix factorization @hile the endmember extraction is relatively easy from geioyn

the abundance estimation remains an open problem. Indeedibiundances can be estimated using least-squares methods
geometric approachesl[2], or by tackling recently-raissiés such as nonlinearity [71, [8]. In this paper, we carstte
abundance estimation problem.

The linear mixture model (LMM) is the most investigated otiee past decade5![6].1[9],_[10]. Its underlying premise is
that each pixel/spectrum is a linear combination of the esvdbers. To be physically interpretable, two constrainésaiten
enforced in the estimation problem: the abundance nontiwégaonstraint (ANC) and the abundance sum-to-one aairst
(ASC) for each pixell[11]. Considering both constraintss flally-constrained least-squares method (FCLS) was ptede
in [9]. A more recently proposed unmixing algorithm is thecadled SUNSAL, forSparse Unmixing by variable Splitting
and Augmented Lagrangidd?]. It addresses the same optimization problem by takohgaatage of the alternating direction
method of multipliers (ADMM) [13]. A constrained-versiorf 8UnSAL was also proposed to solve the constrained sparse
regression problem, where the ASC constraint is relaxedtlaad, -norm regularizer is added.

All these unmixing algorithms hugely suffer from noisy datad outliers within bands. Indeed, in real hyperspectralges
for remote sensing, a considerable proportion (about 2G%)eospectral bands are noisy with low SNR, due to the atmersph
effect such as water absorption[14]. These bands need enfi@ved prior to applying any existing unmixing method; otvise,
the unmixing quality drastically decreases. Such seiititie outliers is due to the investigatéd-norm as a cost function in
the FCLS and SUNnSAL algorithms, as well as all unmixing atbons that explore least-squares solutions. It is worthngot
that nonlinear unmixing algorithms also suffer from thigwback, including the kernel-based fully-constrainedtesguares
(KFCLS) [15], nonlinear fluctuation methods [7] and postiiwear methods [16].

Information theoretic learning provides an elegant aliéve to the conventional minimization of tiig-norm in least-squares
problems, by considering the maximization of the so-catledentropy|[[17],[[18]. Due to its stability and robustnéssoise
and outliers, the correntropy maximization is based onritéral foundations and has been successfully applied tma glass
of applications, including cancer clustering [19], faceagnition [20], and recently hyperspectral unmixingl[2tf,name a
few. In these works, the resulting problem is optimized kg lialf-quadratic technique [22], either in a supervised mearfi20]
or as an unsupervised nonnegative matrix factorizafiof [24].

In this paper, we consider the hyperspectral unmixing pobby defining an appropriate correntropy-based critetions
taking advantage of its robustness to large outliers, a®ggapto the conventiondb-norm criteria. By including constraints
commonly used for physical interpretation, we propose teesthe resulting constrained optimization problems witeraating
direction method of multipliers (ADMM) algorithms. Indeethe ADMM approach splits a hard problem into a sequence of
small and handful one§ [13]. Its relevance to solve noncopveblems was studied in [1L3, Section 9]. We show that ADMM
provides a relevant framework for incorporating differennstraints raised in the unmixing problem. We present theatled
CUSAL (for Correntropy-based Unmixing by variable Splitting and Aegrted Lagrangia)) and study in particular two
algorithms: CUSAL-FC to solve the fully-constrained (AN@dBASC) correntropy-based unmixing problem, and the CUSAL-

SP to solve the sparsity-promoting correntropy-based ximgniproblem. In presence of highly noisy bands, the progose



ADMM method is more robust than classical half-quadratichods for solving correntropy maximization [19], [21], by
alleviating to some degree the parameter estimation pmoliethe latter. See Section IV.C for more details.

The rest of the paper is organized as follows. We first prowd&iccinct survey on the classical unmixing problems in
Section[). In Sectiori_1ll, we propose the correntropy-lthsemixing problems subject to the aforementioned condiai
and study the robustness. The resulting optimization problare solved by the ADMM algorithms described in Sedfign 1V
Experiments on synthetic and real hyperspectral imageprasented in Sectios V addlVI, respectively. Finally, Bedi/I]

provides some conclusions and future works.

II. CLASSICAL UNMIXING PROBLEMS

The linear mixture model (LMM) assumes that each spectrumbeaexpressed as a linear combination of a set of pure
material spectra, termed endmembérs [1]. Consider a hypersl image and le¥ € RY*T denote the matrix of thg

pixels/spectra of. spectral bands. Ley,, be its¢-th column andy;, its I-th row, representing theth band of all pixels. For

notation simplicity, we denotg, = y,,, fort =1,...,7. The LMM can be written as
R
ytzzxrtmr+nt:Mmt+ntv 1)
r=1
where M = [m; --- mpg| € RIXE is the matrix composed by thB endmembers withm,. = [my,. -+ mr,]", & =
[x1; --+ wr¢]" is the abundance vector associated with #tle pixel, andn; € R” is the additive noise. In matrix form for
all pixels, we haveY = M X + N, whereX = [z; --- 7] € R and NV is the noise matrix.

In the following, the endmembers are assumed known, eittean fjround-truth information or by using any endmember
extraction technique. The spectral unmixing problem csinsin estimating the abundances for each pixel, often byirgpl
the least-squares optimization problem

min [y, — M3, @)

for eacht = 1,...,T, where|| - |2 denotes the convention&l-norm. The solution to this conventional least-square$lera
is given by the pseudo-inverse of the (tall) endmember matith x; = (MTM)—lMTyt. The least-squares optimization

problems([(R), for alt = 1,...,T, are often written in a single optimization problem using fbllowing matrix formulation
II}}IIHY*MXH%W (3)

where|| - ||% denotes the Frobenius norm. Its solution is
Xis=M'M)"'M'Y. 4)

Finally, this optimization problem can be also tackled bygidering all the image pixels at each spectral band, whielly

the following least-squares optimization problem
L
i — (MX).|3
H}énlz_; Hyl* ( )l H27

where(-);. denotes thé-th row of its argument. While all these problem formulasdrave a closed-form solution, they suffer

from two major drawbacks. The first one is that several cairgs need to be imposed in order to have a physical meaning



of the results. The second drawback is its sensitivity te@@ind outliers, due to the use of thenorm as a fithess measure.
These two drawbacks are detailed in the following.
To be physically interpretable, the abundances should baegative (ANC) and satisfy the sum-to-one constraint (ASC

Considering both constraints, the fully-constrained tsgsiares problem is formulated as, for each 1,...,T,
min ||y, — Mz,||%, subject tox; > 0 and1'x; = 1,

where1 € R%*! denotes the column vector of ones and) is the non-negativity applied element-wise; In matrix form
min | — M X ||%, subject toX =0

and1'z, =1, fort=1,...,T.

Since there is no closed-form solution when dealing withriba-negativity constraint, several iterative technigbhage been
proposed, such as ttective setscheme with the Lawson and Hanson’s algorithm [23], the iplidative iterative strategies
[24], and the fully-constrained least-squares (FCLS) iégpine [9]. More recently, the alternating direction mettodanultipliers
(ADMM) was applied with success for hyperspectral unmixprgblem, with the SUnSAL algorithm_[12].

Recent work in hyperspectral unmixing have advocated tlaesgy of the abundance vectofs [12], [25].[26]. In thisesas
each spectrum is fitted by a sparse linear mixture of endmesnbamely only the abundances with respect to a small number
of endmembers are nonzero. To this end, the sparsity-pigiagularization with thé;-norm is included in the cost function,

yielding the following constrained sparse regression [emob{12], for eacht = 1,...,T,

min |y, — M| + A 2|1, subject tox; > 0,

T
where the parameter balances the fitness of the least-squares solution and #rnsityplevel. It is worth noting that the ASC
is relaxed when thé;-norm is included. This problem is often considered by ushmeg following matrix formulation

T
min Y — MX|[ + A |lzllr. subject toX = 0.
t=1

Sensitivity to outliers

All the aforementioned algorithms rely on solving a (coasted) least-squares optimization problem, thus inimgyithe
drawbacks of using thé;-norm as the fithess measure. A major drawback is its seitgitiy outliers, where outliers are
some spectral bands that largely deviate from the rest ob#émels. Indeed, considering all the image pixels, the leqséres

optimization problems take the form
L
rggn; Y. — (MX)1.3, (5)

subject to any of the aforementioned constraints. From fitriswulation, it is easy to see how the squardnorm gives
more weight to large residuals, namely to outliers in whickdicted valuegM X)), are far from actual observations,,.
Moreover, it is common for hyperspectral images to presentou20% of unusable spectral bands due to low signal-toenois
ratio essentially from atmospheric effects, such as walbsomtion. In the following section, we overcome this diffty
by considering the correntropy maximization principlenfrehe information theoretic learning, which yields an opzation

problem that is robust to outliers.



TABLE |

COMMONLY-USED SHIFFINVARIANT KERNELS

Kernel K(u,v)
Gaussian exp(%ﬂu k)
Laplacian exp(2_0—12 [lu —vl])
Inverse multiquadratic S —

a Vu—v|24c?

IIl. CORRENTROPY¥BASED UNMIXING PROBLEMS

In this section, we examine the correntropy and write theiMimg problems as correntropy maximization ones. Algarith

for solving these problems are derived in Secfion IV.

A. Correntropy

The correntropy, studied in [17], 18], is a nonlinear losethilarity measure. For two random variabl@sand its estimation
y using some model/algorithm, it is defined by

E[(V, V)], (6)

where E-] is the expectation operator, ar(, -) is a shift-invariant kernel satisfying the Mercer theor@¥][ In practice, while
the joint distribution function ofy and) is unavailable, the sample estimator of correntropy is setbmstead. Employing a

finite number of datd (y,,,¥,.)}~,, it is estimated by

L

1 ~

Z E K’(yl*ayl*>a (7)
=1

up to a normalization factor. Expressions of the most comyrosed shift-invariant Mercer kernels are presented iBIE [
In the following, we restrict the presentation to the Gaarssiernel, since it is the mostly used one for correntropy, [[20],
[28]. It is worth noting that the proposed algorithms can lasilg extended to other kernels. Replacing the expression o
Gaussian kernel ir{7) leads to the following expressionthier correntropy

1 L

Zzexp (%Hyl* *@l*Hg) 9 (8)

=1

whereo denotes the bandwidth of the Gaussian kernel.

The maximization of the correntropy, given by

L
, max % ; WY1 Ui
is termed the maximum correntropy criterion [17]. It is nebdethy that well-known second-order statistics, such a&sriean
square error (MSE) depends heavily on the Gaussian andr lassumptions/[17]. However, in presence of non-Gaussian
noise and in particular large outlietise., observations greatly deviated from the data bulk, thecéffeness of the MSE-based
algorithms will significantly deteriorateé [29]. By conttashe maximization of the correntropy criterion is appiiape for

non-Gaussian signal processing, and is robust in partiagainst large outliers, as shown next.
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Fig. 1. lllustration of the second-order objective funnti(al?, in solid red line) and the negative correntropy objectivaction (L — exp({g—éel?), in dashed

lines for several values af), in terms of the residual errog).

B. The underlying robustness of the correntropy criterion

In this section, we study the sensitivity to outliers of tl@rentropy maximization principle, by showing the robuests of
the underlying mechanism. To this end, we examine the behat¥ithe correntropy in terms of the residual error defined by

€1=||Y;. — Y. |l2- Thus, the correntropy{8) becomes

L
23 e (4eh).
=1
Compared with second-order statistiesg. MSE, the correntropy is more robust with respect to the erdlias shown in
Fig.[ illustrating the second-order and the correntroggative functions in terms of the residual error. As thedasi error
increases, the second-order function keeps increasingadically. On the contrary, the correntropy is only sewusitivithin a
region of small residual errors, this region being conglby the kernel bandwidth. For large magnitudes of residualr,

the correntropy falls to zero. Consequently, the corrgmtreriterion is robust to large outliers.

C. Correntropy-based unmixing problems

The correntropy-based unmixing problem consists in estimgathe unknown abundance matriX, by minimizing the

objective functionC (the negative of correntropy), given by

L
C(X) == exp (5lyp. — (MX)wlf3), 9)
=1

where the Gaussian kernel was considered, or equivalently
L T R 2
C(X)=—) exp <ﬁ (ylt = an mlr) ) : (10)
=1 t=1 r=1
Considering both the ANC and ASC constraints, the fullystaained correntropy unmixing problem becomes
ngi{n C(X), subjecttoX >0

(11)
andl'xz, =1, fort=1,...,T.

To promote sparse representations, the objective fun@p{L0) can be augmented by thgnorm penalty on the abundance

matrix X, leading to the following problem

T
1 i -
min C(X) + AY a1, subject toX = 0. (12)

t=1



IV. ADMM FOR SOLVING THE CORRENTROPY¥BASED UNMIXING PROBLEMS

We first briefly review the alternating direction method ofltipliers (ADMM), following the expressions iri [13, Chap].3

Consider an optimization problem of the form
min - f(z) + g(),
where the functiong and g are closed, proper and convex. The ADMM solves the equivalenstrained problem
rgizn f(x) + g(z) subject toAz + Bz = c, (13)

such as having the particular constraint z for instance. While this formulation may seem trivial, thatiomization problem
can now be tackled using the augmented Lagrangian methoeb\iliee objective function is separablesirandz. By alternating
on each variable separately, the ADMM repeats a direct epofathe dual variable. In its scaled form, the ADMM algorithm
is summarized in Algorithri]1. Assuming that the (unaugmantemelyp = 0 in Algorithm [d) Lagrangian associated with
the problem[(IB) has a saddle point, the ADMM iterates, asrgin Algorithm[1, satisfy the following: (i) the objective
function convergence; (ii) the primal residual convergeme., ||xx+1 — zr+1|]2 — 0; and (iii) the dual residual convergence,

i.e, pllzk+1 — zk||2 — 0. See[[18] for more details.

Algorithm 1 The ADMM algorithm [13]
Input: functionsf andg, matricesA and B, vectorc¢, parametep

1: Initialize k£ = 0, xg, z¢ andug
2: repeat

3 @y = argming f(x) + §||Az + Bz, — ¢ + ui[3;

4 zpg =argming g(z) + 5||Axpy1 + Bz — ¢+ ugl3;
5: Uk+1 :uk+Amk+1+sz+1,c;
6: k=k+1,

7: until stopping criterion

A. Correntropy-based unmixing with full-constraints

In the following, we apply the ADMM algorithm to solve the centropy-based unmixing problem in the fully-constrained
case, presented il {{11). The main steps are summarized orithion [2. Rewrite the variables to be optimized in a vector
x € RFT>*L which is stacked by the columns of the mat&x namelyz = [z] --- x;|". Rewrite also the following vectors
inRETXL: 2 = [2] --- 2] andu = [u] --- w}]",where, fort =1,....T, 2z, = [21; -+ 2re)" anduy = [ugy - up] ' -

By following the formulation of the ADMM in Algorithni1l, we e
T
flx)=C(x) + Z L{l}(1T$t) (14)
t=1

9(2) = tnrr (2)

A=—-I,B=1 and ¢c=0,



whereT is the identity matrix0 € RF7*! is the zero vector ands(u) is the indicator function of the se& defined by

0 if ues;
Ls(u) =
00 otherwise
In this case, the subproblem of theupdate (in line 3 of Algorithni]1) addresses a nonconvex fgrobwithout any closed-
form solution. To overcome this difficulty, we apply an inek&DMM variant in lines 3-5 of AlgorithniR2, which solves the
subproblem iteratively using the gradient descent methrmtiead of solving it exactly and explicitly.

Before that, we eliminate th& equality constraints,e., the sum-to-one constraints, by replacing; with

R—1
TR =1-— E Trt,
r=1

fort=1,...,T. Let® € R(E-DTx1 pe the reduced vector ¢f2 — 1) unknowns to be estimated, stacked by

T = [Ivu x(R—l)t}Tv

fort =1,...,T. By this means, the objective function {n{14) is transfodnfimm (10) into the reduced-form

L -1 T
f(@) = - ZGXP <F Gl(ftf) ; (15)
=1 t=1
wheree (T) = yi. — mur — Zf 11 (mup — mur)xp, for 1 =1,..., L. The gradient of[(I5) with respect ® is stacked as
T
oh _|0h" 0N | pr-nra
T T, Oy ’
.
where $LL = [5’{;{ %} , with the entries given by
ofi(® 1 - 1 - 2
. =—QZ MR — My eXp(2—2 > (@) )Ez(zvt)
T =1 s=1
forallr=1,...,(R—1)andt=1,...,T. Similarly, the functions||x — z, — u.||3 is expressed with respect ®as

R—-1

P 2
E Tpt — ZRt,k — URt k) 5 E (Tpt— 2Zpt, b —Upt k)

o@-53

with the entries in its gradierf§2 given by
99(T)

0Ty

R—1
= P(va-t + Z Tpt — 1+ 2Rtk — Zrek + URtE — Urt,k), (16)
p=1
forallr=1,...,R—1andt=1,...,T.
The solution of thez-update in line 4 Algorithni]l becomes the projectionagf.; — u; onto the first orthant, as shown

in line 7 of Algorithm[2.

B. Sparsity-promoting unmixing algorithm
In order to apply the ADMM algorithm, we express the consiedi optimization probleni(12) as follows
f(z) =C(x) (17)
9(z) = wrrr(2) + Alz(1

A=-I,B=1 and c=0



Algorithm 2 Correntropy-based unmixing with full-constrainGUSAL-FC)
1: Initialize k =0, p > 0, n > 0, 0 > 0; xg, 2o anduy;

2: repeat
3: repeat

— — o o .
4: Tpt1 = Thy1 — H(Fflﬂ + ﬁ)u

5. until convergence

6: reformxy; USINGTk1;

70 Zpy1 = max(0, &1 — uk);
8 Ugy1 = Uk — (Tpt1 — Zkt1);
9 k=k+1,

10: until stopping criterion

By analogy with the previous case, theupdate in line 3 of Algorithni]l is solved iteratively withetgradient descent

method and is given in Algorithi 3 lines 3-5. The gradient[Bll)(with respect ta is stacked byg’—gft, where

of _ 1y 1y 2\ T
oz, o2 Zel(mt)exp 252 (er(xs))” | my,,
=1 s=1
fort=1,...,T, wheree/ () = yir — Zle -+ my-. The z-update in line 4 Algorithni11 involves solving
. 1
21 = argmin g (2) + (p) 12l + 512 — @1 — wel} (18)

In [13], the ADMM has been applied to solve variotishorm problems, including the well-known LASSO [30]. Thelyn
difference betweeri (18) and theupdate in LASSO is that in the latter, no non-negativityrey; , = (z) is enforced. In this

case, thez-update in LASSO is the element-wise soft thresholding aten

Zkt1 = Sx/p(Tht1 — ug),
where the soft thresholding operator[13] is defined by

C—b  if > b
Si(€)

0 it [[CIF < b;
C+b  if ¢<—b.
Following [12], it is straightforward to project the resulhto the nonnegative orthant in order to include the noratigity
constraint, thus yielding

Zpp1 = max(0, Sy, (Try1 — ug)),

where the maximum function is element-wise. All these rsdeld to the correntropy-based unmixing algorithm witarsjty-

promoting, as summarized in Algorithim 3.
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Algorithm 3 Correntropy-based unmixing with sparsity-promoti@JSAL -SP))
1: Initialize k =0, p> 0,0 >0, n > 0, A > 0; xg, 2o anduy;

2: repeat
3:  repeat
4: Th+1 = Thtl — ﬂ(aflil + p(Tpg1 — 2 — ’uk)) ;

5. until convergence

6:  zpr1 = max(0, Sy, (Trr1 — ur));
7 Uk = Uk — (Tl — Zht1);

8 k=k+1;

9: until stopping criterion

C. On the bandwidth determination and convergence

We apply a three-fold stopping criterion for Algorithins 2dd8, according to[[13],[[12]: (i) the primal and dual resicual
are small enough, namelic, 11 — 2412 < €1 andp||zp1 — zxl2 < €2, Wheree; = e, = VRT x 10~° as in [12], (i) the
primal residual starts to increases,, ||xx+1 — zkt1ll2 > ||@k — zk|2, Or (i) the maximum iteration number is attained.

The bandwidthr in the Gaussian kernel should be well-tuned. Note that alsrakie for this parameter punishes harder the
outlier bands, thus increasing the robustness of the #éfgorio outliers|[[20]. Note that, in this study, the ADMM is digg to
address a nonconvex objective function, thus no conveggsnguaranteed theoretically, according(tol [13]. Congidethese
issues, we propose to fix the bandwidth empirically as surizedin Algorithm[4 and described next.

Following [20], [21], we first initialize the bandwidth pareeter as a function of the reconstruction error, given by
o2 = L)y - MX s (19)
0 T LSl F>

where the parametdris chosen a¢ = % in this study, andX s is the least-squares solutidd (4). In the case of a result too
apart from that of least-squares solution, the parametaugsnented by = 1.2¢, until that the condition% <2
is satisfied. The algorithm divergence occurs if the stogiiterion (ii) is satisfied, namely the primal residualregses over
iterations. In this case, either the parameter is too latgetd an overestimated initialization, or it is too small.cAodingly,
we either decrease it by = o(/p, or increase it byy = 1.20, until that the ADMM converges.

The nonconvexity of the problem requires a loop for tuningsme the ADMM. This leads to an algorithm more time-
consuming than the half-quadratic methods which trans$dim original problem to a re-weighted NME_[19], [20]. Howeev
for half-quadratic with the expectation conditional makdation method (see details in [19]), although the paramistepdated
over iterations, it is around the initialization value thsitestimated from a formula similar t6{19). When dealinghwliigh
noise levels, this value is often not small enough to accéamthe influence brought by outliers. The parameter tunieg s
in ADMM alleviates the parameter estimation problem to sategree. This phenomenon is observed in the experiments in
the next sections.

Although the convergence is not proved theoretically, wi pvovide evidence in the experiments that the proposed ADM

algorithm converges to stationary points and that the te$udve robustness with respect to the initializations.
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Algorithm 4 Tuning the bandwidth parameter

1:

2:

3:

4.

5:

6:

10:

11:

12:

13:

14:

15:

16:

Initialize ¢ = o using [19);p = 1;
Do CUSAL with Algorithm[2 or Algorithm(’8;

if stopping criterion (i) or (iii) is satisfiedthen

if condition (Al < 2 is satisfied then
o* = o (optimal value)
else
increases = 1.20, and go to line 2
end if
else
if o > 10000g (due to the overestimates))) then
p=p+1
decreaser = 0y /p, and go to line 2
else
increases = 1.20, and go to line 2
end if
end if

V. EXPERIMENTS WITH SYNTHETIC DATA

In this section, the performance of the proposed fully-t@ised (CUSAL-FC) and sparsity-promoting (CUSAL-SP)

algorithms is evaluated on synthetic data. A comparatidysts performed considering six state-of-the-art methaodgosed

for linear and nonlinear unmixing models.

o Fully-Constrained Least-SquardsqL S) [9]: The FCLS is developed for the linear model. EnforciragtbANC and ASC

constraints, this technique yields the optimal abundanagimin the least-squares sense.

Sparse Unmixing by variable Splitting and Augmented Lagiam (SUnSAL) [12]: This method is based on the ADMM.
Several variants are developed by including different traigs, with the fully-constrained SUnSAL-FCLS and the
sparsity-promoting SUnSAL-sparse.

The Bayesian algorithm for Generalized Bilinear ModBayGBM) [31], [32]: This method estimates the abundances
with the generalized bilinear model (GBM), which adds setorder interactions between endmembers to the linear

model, yielding the model
R—1 R

Yy, = Mz, + Z Z Vij tZit Lt (M © M) + Ny,
i=1 j=i+1

where0 < ~;;+ < 1 controls the interactions between endmembessandm;, and® is the element-wise product. The
BayGBM considers both ANC and ASC.
Kernel Fully-Constrained Least-SquaréSHCL S) [15]: This method generalizes FCLS, by replacing the inpreduct

with a kernel function. In the following, the Gaussian keriseapplied for simulation.
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Fig. 2. TheR = 3 (left) and 6 (right) USGS signatures chosen for simulation.

« Nonnegative Matrix Factorization with a Maximum CorremycCriterion NMF-MCC) [19]: This NMF-based method
maximizes the correntropy between the input matrix and tloelyct of the two matrices to estimate in an unsupervised
manner. The resulting optimization problem is solved ughmg half-quadratic technique and the expectation conwitio
maximization method.

« Correntropy-based NMF promoted y-norm ¢;-CENMF) [21]: This method improves the NMF-MCC by including
the ¢,-norm of the second unknown matrix to the objective functifam the sake of a sparse representation. Similar to
the NMF-MCC, the half-quadratic strategy is applied to edllrte optimization problem.

« For fair comparison, the supervised cases of NMF-MCC &r@ENMF are considered in the experiments, by setting

the endmember matrices as the actual ones.

A. Performance of CUSAL-FC (fully-constrained algorithm)

We first compare the fully-constrained CUSAL-FC, presenitedV-A] with the state-of-the-art methods. Two sets of
experiments are performed, mainly considering the inflaesfcthe noise level and the number of endmembers.

Each image, ob0 x 50 pixels, is generated using the linear mixing modél (1). Treusian noise is added as in][21]
where the noise levels, represented by SNR, vary acrossahéshto simulate the cases of real hyperspectral images. The
R € {3,6} endmembers, as shown in Fig. 2, are drawn from the USGS Wdagietral library [38]. These endmembers are
defined overL = 244 continuous bands with the wavelength ranging fromu@2to 3.0um. The abundance vectons are
uniformly generated using a Dirichlet distribution as [ir8]3[34].

The unmixing performance is evaluated using the abundaraternean square error (RMSE) [31], [35], defined by

T
1
_ _ w2
RMSE = —t§:1|\mt xy|?,

wherez; is the estimated abundance vector.

In the first set of experiments, the SNR of bands are generatigy the normal distribution SNR N (SNR €2), with
SNR € {10, 20, 30, 40,50} ande = 5 according to[[211]. TABLECDl andTll illustrate the average RMSE over 10 Monte-Carlo
realizations, respectively foR = 3 and R = 6. It is easy to see that, when the average noise level is velathigh with
SNR = 10 and20, the proposed CUSAL-FC algorithm outperforms all the corimgamethods in terms of RMSE, for different
numbers of endmembers. When the average noise level is&zedyabow, namelySNR = 40 and 50, the proposed CUSAL-FC

is able to provide comparable results as the least squaprsahese.g, FCLS and SUnNSAL-FCLS. It is also shown that
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TABLE Il

COMPARISON OFRMSE (x10~2) WITH DIFFERENTSNR,FORR = 3

SNR= 10 | SNR= 20 | SNR= 30 | SNR= 40 | SNR= 50
FCLS 10.18 ® 3.86 ® 1.20 ® 041 @ 0.12
SUNSAL-FCLS 10.17 ® 3.86 ® 1.20 ® 041 @ 0.12
BayGBM 10.23 3.88 ® 1.20 0.42 0.16
KFCLS 12.64 4.43 1.42 0.55 ® 013
NMF-MCC 13.73 5.53 1.95 @ 0.38 0.15
£,-CENMF ® 991 4.42 1.28 0.42 0.15
CUSAL-FC ® 7.92 ® 3.03 ® 115 ® 041 ® 012

TABLE Il

COMPARISON OFRMSE (x10~2) WITH DIFFERENTSNR,FORR = 6

SNR= 10 | SNR= 20 | SNR= 30 | SNR= 40 | SNR= 50
FCLS ® 9.04 5.14 2.05 @ 0.70 @ 0.24
SUNSAL-FCLS| (@ 9.04 5.14 2.05 ® 0.70 @ 0.24
BayGBM 9.05 5.14 2.04 ® 0.70 @ 0.24
KFCLS 9.53 6.06 2.20 0.76 ® 025
NMF-MCC 9.49 5.28 2.08 ® 0.74 0.33
£,-CENMF 9.45 ® 5.06 @ 198 ® 0.74 0.32
CUSAL-FC @ 7.87 @ 4.63 ® 2.02 @ 0.70 @ 0.24

the performance of the proposed algorithm improves whereasing the SNR.

The second set of experiments is conducted in order to exathm performance of the proposed method in presence of
highly noisy bands, which is a common phenomenon for reaétsgectral images. To this end, the data is similarly geedra
as previously described, where two normal distribution®SNA (SNR;, ¢2) and SNR~ N (SNRy, €2) are used, with = 5.

While most bands have a common average noisy level &itiR, = 30, there are 40 out of 224 bands randomly chosen to

be severely corrupted by high level average noise 8MNR, € {5,10,15}. TABLE [V]and [Vl report the average of RMSE
over 10 Monte-Carlo realizations, respectively far= 3 and R = 6. We observe that the proposed CUSAL-FC algorithm
is the most effective among all the comparing methods whendtita contains highly noisy bands, regardless of number of
endmembers.

We investigate the convergence property of the proposed RDayorithm with CUSAL-FC, and examine its robustness
with respect to the initialization. To this end, a toy imade56 x 50 pixels is generated using the linear mixing model (1),
where the Gaussian noise with SNR30 is added. Thek = 3 endmembers, as shown in Hig. 2 (left), is considered whae th
abundance vectors; are uniformly generated using a Dirichlet distribution.eTthanges of the objective function value, the
primal and dual residuals over the first 50 iterations aremjiwn Fig.[3. A rapid drop of objective function and residutals

the first 20 iterations is observed, signifying that the jmsgd ADMM algorithm converges to stationary points with restd
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TABLE IV

COMPARISON OFRMSE (x10~2) wiTH SNR; = 30 AND DIFFERENTSNR;, FORR = 3

SNR; =5 | SNR; = 10 | SNR; = 15
FCLS 7.66 4.86 2.99
SUNSAL-FCLS 7.66 4.85 2.99
BayGBM 7.70 4.90 3.00
KFCLS 10.45 5.85 4.45
NMF-MCC 7.50 4.82 2.91
£,-CENMF ® 533 ® 3.08 ® 217
CUSAL-FC ® 175 @ 166 ® 173

TABLE V

COMPARISON OFRMSE (x10~2) wiTH SNR; = 30 AND DIFFERENTSNR;, FORR = 6

SNR; =5 | SNR; = 10 | SNR; = 15
FCLS 8.00 6.27 4.37
SUNSAL-FCLS 8.00 6.27 4.37
BayGBM 8.02 6.29 4.38
KFCLS 8.56 7.81 4.44
NMF-MCC 8.08 6.22 4.31
£,-CENMF ® 7.15 ® 521 ® 363
CUSAL-FC @ 3.98 ® 373 @ 335

accuracy. We examine the robustness of CUSAL-FC with redpethe initialization, and compare it with the half-quatita
approach proposed for maximum correntropy criterion, faiNdMF-MCC [19]. The elements inX are identically initialized
for each method, using (i) uniform distribution.; ~ ¢/(0,1); (ii) normal distributionz,; ~ N(0.5,0.1) combined with
rounding all the negative values up to zero; and (iii) noratiatribution z,; ~ A/(0.5,0.2) combined with rounding all the
negative values up to zero. Ten Monte-Carlo realizatiorgparformed, leading to the averages and deviations of RM&th g

in TABLE NI In contrast to NMF-MCC, these results show thhe tproposed ADMM algorithm provides good results even
when considering different initializatioEls.

11t is not reasonable to directly compare the objective fiancvalues of CUSAL-FC and NMF-MCC, since these two methattiress distinct optimization

problems involving different values of parameterand different constraints.

TABLE VI

THE AVERAGES AND DEVIATIONS OFRMSE (x10~2) WITH RESPECT TO DIFFERENT INITIALIZATIONS

CUSAL-FC NMF-MCC

T ~ U0,1) 1.16+2.5 x 1072 | 1.2743.5 x 1072

Zre ~ N(0.5,0.1) | 0.09+0.2 x 1072 | 0.11+0.1 x 10~ 2

Zre ~ N(0.5,0.2) | 0.09+£0.5 x 1072 | 4.70+4.0 x 10~ 2
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Fig. 3. lllustration of the convergence property of CUSAC;Fby plotting the objective function value, the primal andabresiduals over the first 50

iterations, using a fixed value @f=0.01.

B. Performance of CUSAL-SP (sparsity-promoting algorjthm

The performance of the proposed sparsity-promoting CUSR_presented [N TVAB, is compared with two sparsity-prangpt
methods: SUnSAL-sparse afigdCENMF, on a series of data with sparse abundance matricestidy the influence of (i) the
noise level over bands, nameBNR, and (i) the sparsity level of the abundances. Each émafjl5 x 15 pixels, is generated
by the linear mixture model. The endmember matrix is comgdser = 62 USGS signatures, where the angle between any
two different endmembers is larger thaf° [25]. The K nonzero entries in each abundance veatprare generated by a
Dirichlet distribution. The value ofX (i.e., the indicator of sparsity level) ranges from 2 to 15, white average level of
noiseSNR € {10, 20, 30}. A rough measure of the sparsity level of the unknown abueelamatrix from the input spectra [36]

takes the form
L

s L Z VT — ”yl*Hl/Hyl*”?.
— VT —1

For all the algorithms, the sparsity-promoting parametés adjusted using the sét< {107°,5-1075,104,5- 1074, 1073}.

The unmixing performance with the sparsity-promoting &lhmns is evaluated using the signal-to-reconstructiaiorer

measured in decibels, according tol[12],1[25]. It is defingd b

T 2
SRE = 101log;, ( 2= [|2ellz )

T o~
D e — z |3

The results, averaged over ten Monte-Carlo realizatiomsillastrated in Fig[ 4. Considering that the abundanceimander

estimation is sparse at different levels, we conclude tHevitng: CUSAL-SP always outperforms SUnSAL-SP. When dwegl
with high noise levels, namel$NR = 10 and 20, CUSAL-SP outperformg;-CENMF in most cases (except fdt = 12
and 15 with SNR = 20). When the noise level is relatively low witBNR = 30, the CUSAL-SP provides the best unmixing
quality with the highest SRE value fdk < 7, while ¢;-CENMF leads to the best unmixing quality especially f6r> 10.
Still, the proposed CUSAL-SP always outperforms SUnSAI@fich is not the case of,-CENMF.

VI. EXPERIMENTS WITHREAL DATA

This section presents the performance of the proposedithigs on a real hyperspectral image. We consides@x 190
sub-image taken from the Cuprite mining image, acquiredneyAVIRIS sensor when flying over Las Vegas, Nevada, USA.

The image has been widely investigated in the literature[EF]. The raw data containk = 224 bands, covering a wavelength
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Fig. 4. The averaged signal-to-reconstruction error (SRiff) respect to the sparsity levél, averaged over ten Monte-Carlo realizations. Comparison f

various average noise leveNR.

range0.4 — 2.5um. Among, there arg7 relatively noisy ones with low SNR, namely the barids 3, 105 — 115, 150 — 170,
and223 — 224. The geographic composition of this area is estimated tludscup to14 minerals [3]. Neglecting the similar
signatures, we considé2 endmembers as often investigated in the literature [7]}. [Biie VCA technique is first applied to
extract these endmembers on the clean image Wwith 187 bands. Starting fronl, = 187 bands, the noisy bands, randomly
chosen from the bands— 3, 105 — 115, 150 — 170, and 223 — 224, are gradually included to form a series of input data.
Therefore, the experiments are conducted with- 187,193,199, 205,211, 217,223 and 224 bands.

Since ground-truth abundances are unknown, the perforenanmeasured with the averaged spectral angle distance)(SAD

between the input specteg, and the reconstructed on§§ as illustrated in Fig.]5, where the SAD is defined by

Zarcco yt 22
S
{1111

The estimated abundance maps usifig, 205 and 224 bands are given in Fi§l 6, Figl 7, and Hig. 8, respectivelyabsence
of noisy bandsi(e., L = 187 bands), all the methods lead to satisfactory abundance,matts NMF-MCC providing the
smallest SAD. As the number of noisy bands increases, edjyefiom L = 199 to L = 224, the unmixing performance
of the state-of-the-art methods deteriorates drasticalhjile the proposed CUSAL yields stable SAD. The obtainesiilte
confirm the good behavior of the proposed CUSAL algorithmd toeir robustness in presence of corrupted spectral bands.
The MATLAB® (R2010) average implementation times per pixel in millats are shown in TABLEVII, when experiments
are performed with all. = 224 bands. The estimated time for CUSAL-FC includes the esiomatf the parametes.

TABLE VII

COMPUTATIONAL TIME (MS/PIXEL)

ON UNMIXING THE CUPRITE IMAGE USING224BANDS

SUNSAL-FCLS | 0.89
FCLS 0.42
BayGBM 34.80
KFCLS 0.39
NMF-MCC 3.14
¢1-CENMF 5.54
CUSAL-FC 20.94
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Fig. 5. Cuprite image: The averaged spectral angle distance (SAD) using diffenemtber of bands, computed without the noisy bamds 3,105 —
115,150 — 170, and 223 — 224.

VIl. CONCLUSION

This paper presented a supervised unmixing algorithm besetthe correntropy maximization principle. Two correntrep
based unmixing problems were addressed, the first with timenegativity and sum-to-one constraints, and the secotid wi
the non-negativity constraint and a sparsity-promotingnteThe alternating direction method of multipliers (ADMNNas
investigated in order to solve the correntropy-based umgigroblems. The robustness of the proposed unmixing ndetlas
validated on synthetic and real hyperspectral images.réwtirks include the generalization of the correntropyecidn to

account for the multiple reflection phenomenpnl [31]./ [38B][ as well as incorporating nonlinear models|[40].
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