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Abstract

In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric

effects, thus requiring robust techniques for the unmixingproblem. This paper presents a robust supervised spectral unmixing

approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the

correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem

considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the secondone deals

with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved using an

alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral imagesvalidate the

performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing with ADMM

is particularly robust against highly noisy outlier bands.

Index Terms

Correntropy, maximum correntropy estimation, alternating direction method of multipliers, hyperspectral image, unmixing problem.

I. I NTRODUCTION

SPectral unmixing is an essential issue in many disciplines,including signal and image processing, with a wide range of

applications, such as classification, segmentation, material identification and target detection. Typically, a hyperspectral

image corresponds to a scene taken at many continuous and narrow bands across a certain wavelength range; namely, each

pixel is a spectrum. Assuming that each spectrum is a mixtureof several pure materials, the unmixing problem consists

in two tasks: (i) identifying these pure materials (the so-called endmembers); (ii) estimating their proportions (the so-called

abundances) at each pixel [1]. In practice, these two steps can be performed either sequentially or simultaneously [2]. Well-

known endmember extraction algorithms include the pure-pixel-based ones,e.g., the vertex component analysis (VCA) [3]
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and the N-FINDR [4], as well as the minimum-volume-based ones, e.g., the minimum simplex analysis [5] and the minimum

volume constrained nonnegative matrix factorization [6].While the endmember extraction is relatively easy from geometry,

the abundance estimation remains an open problem. Indeed, the abundances can be estimated using least-squares methods,

geometric approaches [2], or by tackling recently-raised issues such as nonlinearity [7], [8]. In this paper, we consider the

abundance estimation problem.

The linear mixture model (LMM) is the most investigated overthe past decades [6], [9], [10]. Its underlying premise is

that each pixel/spectrum is a linear combination of the endmembers. To be physically interpretable, two constraints are often

enforced in the estimation problem: the abundance non-negativity constraint (ANC) and the abundance sum-to-one constraint

(ASC) for each pixel [11]. Considering both constraints, the fully-constrained least-squares method (FCLS) was presented

in [9]. A more recently proposed unmixing algorithm is the so-called SUnSAL, forSparse Unmixing by variable Splitting

and Augmented Lagrangian[12]. It addresses the same optimization problem by taking advantage of the alternating direction

method of multipliers (ADMM) [13]. A constrained-version of SUnSAL was also proposed to solve the constrained sparse

regression problem, where the ASC constraint is relaxed andthe ℓ1-norm regularizer is added.

All these unmixing algorithms hugely suffer from noisy dataand outliers within bands. Indeed, in real hyperspectral images

for remote sensing, a considerable proportion (about 20%) of the spectral bands are noisy with low SNR, due to the atmospheric

effect such as water absorption [14]. These bands need to be removed prior to applying any existing unmixing method; otherwise,

the unmixing quality drastically decreases. Such sensitivity to outliers is due to the investigatedℓ2-norm as a cost function in

the FCLS and SUnSAL algorithms, as well as all unmixing algorithms that explore least-squares solutions. It is worth noting

that nonlinear unmixing algorithms also suffer from this drawback, including the kernel-based fully-constrained least-squares

(KFCLS) [15], nonlinear fluctuation methods [7] and post-nonlinear methods [16].

Information theoretic learning provides an elegant alternative to the conventional minimization of theℓ2-norm in least-squares

problems, by considering the maximization of the so-calledcorrentropy [17], [18]. Due to its stability and robustnessto noise

and outliers, the correntropy maximization is based on theoretical foundations and has been successfully applied to a wide class

of applications, including cancer clustering [19], face recognition [20], and recently hyperspectral unmixing [21],to name a

few. In these works, the resulting problem is optimized by the half-quadratic technique [22], either in a supervised manner [20]

or as an unsupervised nonnegative matrix factorization [19], [21].

In this paper, we consider the hyperspectral unmixing problem by defining an appropriate correntropy-based criterion,thus

taking advantage of its robustness to large outliers, as opposed to the conventionalℓ2-norm criteria. By including constraints

commonly used for physical interpretation, we propose to solve the resulting constrained optimization problems with alternating

direction method of multipliers (ADMM) algorithms. Indeed, the ADMM approach splits a hard problem into a sequence of

small and handful ones [13]. Its relevance to solve nonconvex problems was studied in [13, Section 9]. We show that ADMM

provides a relevant framework for incorporating differentconstraints raised in the unmixing problem. We present the so-called

CUSAL (for Correntropy-based Unmixing by variable Splitting and Augmented Lagrangian), and study in particular two

algorithms: CUSAL-FC to solve the fully-constrained (ANC and ASC) correntropy-based unmixing problem, and the CUSAL-

SP to solve the sparsity-promoting correntropy-based unmixing problem. In presence of highly noisy bands, the proposed
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ADMM method is more robust than classical half-quadratic methods for solving correntropy maximization [19], [21], by

alleviating to some degree the parameter estimation problem in the latter. See Section IV.C for more details.

The rest of the paper is organized as follows. We first providea succinct survey on the classical unmixing problems in

Section II. In Section III, we propose the correntropy-based unmixing problems subject to the aforementioned constraints,

and study the robustness. The resulting optimization problems are solved by the ADMM algorithms described in Section IV.

Experiments on synthetic and real hyperspectral images arepresented in Sections V and VI, respectively. Finally, Section VII

provides some conclusions and future works.

II. CLASSICAL UNMIXING PROBLEMS

The linear mixture model (LMM) assumes that each spectrum can be expressed as a linear combination of a set of pure

material spectra, termed endmembers [1]. Consider a hyperspectral image and letY ∈ RL×T denote the matrix of theT

pixels/spectra ofL spectral bands. Lety∗t be its t-th column andyl∗ its l-th row, representing thel-th band of all pixels. For

notation simplicity, we denoteyt = y∗t, for t = 1, . . . , T . The LMM can be written as

yt =

R∑

r=1

xrt mr + nt = Mxt + nt, (1)

whereM = [m1 · · · mR] ∈ RL×R is the matrix composed by theR endmembers withmr = [m1r · · · mLr]
⊤, xt =

[x1t · · · xRt]
⊤ is the abundance vector associated with thet-th pixel, andnt ∈ RL is the additive noise. In matrix form for

all pixels, we haveY = MX +N , whereX = [x1 · · · xT ] ∈ RR×T andN is the noise matrix.

In the following, the endmembers are assumed known, either from ground-truth information or by using any endmember

extraction technique. The spectral unmixing problem consists in estimating the abundances for each pixel, often by solving

the least-squares optimization problem

min
xt

‖yt −Mxt‖22, (2)

for eacht = 1, . . . , T , where‖ · ‖2 denotes the conventionalℓ2-norm. The solution to this conventional least-squares problem

is given by the pseudo-inverse of the (tall) endmember matrix, with xt = (M⊤M)−1M⊤yt. The least-squares optimization

problems (2), for allt = 1, . . . , T , are often written in a single optimization problem using the following matrix formulation

min
X

‖Y −MX‖2F , (3)

where‖ · ‖2F denotes the Frobenius norm. Its solution is

XLS = (M⊤M)−1M⊤Y . (4)

Finally, this optimization problem can be also tackled by considering all the image pixels at each spectral band, which yields

the following least-squares optimization problem

min
X

L∑

l=1

‖yl∗ − (MX)l∗‖22,

where(·)l∗ denotes thel-th row of its argument. While all these problem formulations have a closed-form solution, they suffer

from two major drawbacks. The first one is that several constraints need to be imposed in order to have a physical meaning
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of the results. The second drawback is its sensitivity to noise and outliers, due to the use of theℓ2-norm as a fitness measure.

These two drawbacks are detailed in the following.

To be physically interpretable, the abundances should be nonnegative (ANC) and satisfy the sum-to-one constraint (ASC).

Considering both constraints, the fully-constrained least-squares problem is formulated as, for eacht = 1, . . . , T ,

min
xt

‖yt −Mxt‖22, subject toxt � 0 and1⊤xt = 1,

where1 ∈ RR×1 denotes the column vector of ones and� 0 is the non-negativity applied element-wise; In matrix form:

min
X

‖Y −MX‖2F , subject toX � 0

and1⊤xt = 1, for t = 1, . . . , T.

Since there is no closed-form solution when dealing with thenon-negativity constraint, several iterative techniqueshave been

proposed, such as theactive setscheme with the Lawson and Hanson’s algorithm [23], the multiplicative iterative strategies

[24], and the fully-constrained least-squares (FCLS) technique [9]. More recently, the alternating direction methodof multipliers

(ADMM) was applied with success for hyperspectral unmixingproblem, with the SUnSAL algorithm [12].

Recent work in hyperspectral unmixing have advocated the sparsity of the abundance vectors [12], [25], [26]. In this case,

each spectrum is fitted by a sparse linear mixture of endmembers, namely only the abundances with respect to a small number

of endmembers are nonzero. To this end, the sparsity-promoting regularization with theℓ1-norm is included in the cost function,

yielding the following constrained sparse regression problem [12], for eacht = 1, . . . , T ,

min
xt

‖yt −Mxt‖22 + λ‖xt‖1, subject toxt � 0,

where the parameterλ balances the fitness of the least-squares solution and the sparsity level. It is worth noting that the ASC

is relaxed when theℓ1-norm is included. This problem is often considered by usingthe following matrix formulation

min
X

‖Y −MX‖2F + λ

T∑

t=1

‖xt‖1, subject toX � 0.

Sensitivity to outliers

All the aforementioned algorithms rely on solving a (constrained) least-squares optimization problem, thus inheriting the

drawbacks of using theℓ2-norm as the fitness measure. A major drawback is its sensitivity to outliers, where outliers are

some spectral bands that largely deviate from the rest of thebands. Indeed, considering all the image pixels, the least-squares

optimization problems take the form

min
X

L∑

l=1

‖yl∗ − (MX)l∗‖22, (5)

subject to any of the aforementioned constraints. From thisformulation, it is easy to see how the squaredℓ2-norm gives

more weight to large residuals, namely to outliers in which predicted values(MX)l∗ are far from actual observationsyl∗.

Moreover, it is common for hyperspectral images to present up to 20% of unusable spectral bands due to low signal-to-noise

ratio essentially from atmospheric effects, such as water absorption. In the following section, we overcome this difficulty

by considering the correntropy maximization principle from the information theoretic learning, which yields an optimization

problem that is robust to outliers.



5

TABLE I

COMMONLY-USED SHIFT-INVARIANT KERNELS

Kernel κ(u, v)

Gaussian exp( −1

2σ2 ‖u− v‖2)

Laplacian exp( −1

2σ2 ‖u− v‖)

Inverse multiquadratic 1√
‖u−v‖2+c2

III. C ORRENTROPY-BASED UNMIXING PROBLEMS

In this section, we examine the correntropy and write the unmixing problems as correntropy maximization ones. Algorithms

for solving these problems are derived in Section IV.

A. Correntropy

The correntropy, studied in [17], [18], is a nonlinear localsimilarity measure. For two random variables,Y and its estimation

Ŷ using some model/algorithm, it is defined by

IE[κ(Y, Ŷ)], (6)

where IE[·] is the expectation operator, andκ(·, ·) is a shift-invariant kernel satisfying the Mercer theorem [27]. In practice, while

the joint distribution function ofY and Ŷ is unavailable, the sample estimator of correntropy is adopted instead. Employing a

finite number of data{(yl∗, ŷl∗)}Ll=1, it is estimated by

1

L

L∑

l=1

κ(yl∗, ŷl∗), (7)

up to a normalization factor. Expressions of the most commonly-used shift-invariant Mercer kernels are presented in TABLE I.

In the following, we restrict the presentation to the Gaussian kernel, since it is the mostly used one for correntropy [17], [20],

[28]. It is worth noting that the proposed algorithms can be easily extended to other kernels. Replacing the expression of

Gaussian kernel in (7) leads to the following expression forthe correntropy

1

L

L∑

l=1

exp
(

−1
2σ2 ‖yl∗ − ŷl∗‖22

)
, (8)

whereσ denotes the bandwidth of the Gaussian kernel.

The maximization of the correntropy, given by

max
ŷ1∗,...,ŷL∗

1

L

L∑

l=1

κ(yl∗, ŷl∗),

is termed the maximum correntropy criterion [17]. It is noteworthy that well-known second-order statistics, such as the mean

square error (MSE) depends heavily on the Gaussian and linear assumptions [17]. However, in presence of non-Gaussian

noise and in particular large outliers,i.e., observations greatly deviated from the data bulk, the effectiveness of the MSE-based

algorithms will significantly deteriorate [29]. By contrast, the maximization of the correntropy criterion is appropriate for

non-Gaussian signal processing, and is robust in particular against large outliers, as shown next.
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Fig. 1. Illustration of the second-order objective function (ǫ2
l
, in solid red line) and the negative correntropy objective function (1− exp( −1

2σ2 ǫ
2
l
), in dashed

lines for several values ofσ), in terms of the residual error (ǫl).

B. The underlying robustness of the correntropy criterion

In this section, we study the sensitivity to outliers of the correntropy maximization principle, by showing the robustness of

the underlying mechanism. To this end, we examine the behavior of the correntropy in terms of the residual error defined by

ǫl=‖yl∗−ŷl∗‖2. Thus, the correntropy (8) becomes

1

L

L∑

l=1

exp
(

−1
2σ2 ǫ

2
l

)
.

Compared with second-order statistics,e.g. MSE, the correntropy is more robust with respect to the outliers, as shown in

Fig. 1 illustrating the second-order and the correntropy objective functions in terms of the residual error. As the residual error

increases, the second-order function keeps increasing dramatically. On the contrary, the correntropy is only sensitive within a

region of small residual errors, this region being controlled by the kernel bandwidth. For large magnitudes of residualerror,

the correntropy falls to zero. Consequently, the correntropy criterion is robust to large outliers.

C. Correntropy-based unmixing problems

The correntropy-based unmixing problem consists in estimating the unknown abundance matrixX, by minimizing the

objective functionC (the negative of correntropy), given by

C(X) = −
L∑

l=1

exp
(

−1
2σ2 ‖yl∗ − (MX)l∗‖22

)
, (9)

where the Gaussian kernel was considered, or equivalently

C(X) = −
L∑

l=1

exp

(
−1
2σ2

T∑

t=1

(
ylt −

R∑

r=1

xrt mlr

)2
)
. (10)

Considering both the ANC and ASC constraints, the fully-constrained correntropy unmixing problem becomes

min
X

C(X), subject toX � 0

and1⊤xt = 1, for t = 1, . . . , T.

(11)

To promote sparse representations, the objective function(9)-(10) can be augmented by theℓ1-norm penalty on the abundance

matrix X, leading to the following problem

min
X

C(X) + λ

T∑

t=1

‖xt‖1, subject toX � 0. (12)
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IV. ADMM FOR SOLVING THE CORRENTROPY-BASED UNMIXING PROBLEMS

We first briefly review the alternating direction method of multipliers (ADMM), following the expressions in [13, Chap. 3].

Consider an optimization problem of the form

min
x

f(x) + g(x),

where the functionsf andg are closed, proper and convex. The ADMM solves the equivalent constrained problem

min
x,z

f(x) + g(z) subject toAx+Bz = c, (13)

such as having the particular constraintx = z for instance. While this formulation may seem trivial, the optimization problem

can now be tackled using the augmented Lagrangian method where the objective function is separable inx andz. By alternating

on each variable separately, the ADMM repeats a direct update of the dual variable. In its scaled form, the ADMM algorithm

is summarized in Algorithm 1. Assuming that the (unaugmented, namelyρ = 0 in Algorithm 1) Lagrangian associated with

the problem (13) has a saddle point, the ADMM iterates, as given in Algorithm 1, satisfy the following: (i) the objective

function convergence; (ii) the primal residual convergence, i.e., ‖xk+1 − zk+1‖2 → 0; and (iii) the dual residual convergence,

i.e., ρ‖zk+1 − zk‖2 → 0. See [13] for more details.

Algorithm 1 The ADMM algorithm [13]
Input: functionsf andg, matricesA andB, vectorc, parameterρ

1: Initialize k = 0, x0, z0 andu0

2: repeat

3: xk+1 = argminx f(x) + ρ
2‖Ax+Bzk − c+ uk‖22;

4: zk+1 = argminz g(z) +
ρ
2‖Axk+1 +Bz − c+ uk‖22;

5: uk+1 = uk +Axk+1 +Bzk+1 − c;

6: k = k + 1;

7: until stopping criterion

A. Correntropy-based unmixing with full-constraints

In the following, we apply the ADMM algorithm to solve the correntropy-based unmixing problem in the fully-constrained

case, presented in (11). The main steps are summarized in Algorithm 2. Rewrite the variables to be optimized in a vector

x ∈ RRT×1, which is stacked by the columns of the matrixX, namelyx = [x⊤
1 · · · x⊤

T ]
⊤. Rewrite also the following vectors

in RRT×1: z = [z⊤
1 · · · z⊤

T ]
⊤ andu = [u⊤

1 · · · u⊤
T ]

⊤, where, fort = 1, . . . , T , zt = [z1t · · · zRt]
⊤ andut = [u1t · · · uRt]

⊤.

By following the formulation of the ADMM in Algorithm 1, we set

f(x) = C(x) +
T∑

t=1

ι{1}(1
⊤xt) (14)

g(z) = ιRRT

+
(z)

A = −I,B = I and c = 0,
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whereI is the identity matrix,0 ∈ RRT×1 is the zero vector andιS(u) is the indicator function of the setS defined by

ιS(u) =





0 if u ∈ S;

∞ otherwise.

In this case, the subproblem of thex-update (in line 3 of Algorithm 1) addresses a nonconvex problem without any closed-

form solution. To overcome this difficulty, we apply an inexact ADMM variant in lines 3-5 of Algorithm 2, which solves the

subproblem iteratively using the gradient descent method,instead of solving it exactly and explicitly.

Before that, we eliminate theT equality constraints,i.e., the sum-to-one constraints, by replacingxRt with

xRt = 1−
R−1∑

r=1

xrt,

for t = 1, . . . , T . Let x ∈ R(R−1)T×1 be the reduced vector of(R− 1) unknowns to be estimated, stacked by

xt =
[
x1t · · · x(R−1)t

]⊤
,

for t = 1, . . . , T . By this means, the objective function in (14) is transformed from (10) into the reduced-form

f1(x) = −
L∑

l=1

exp

(
−1

2σ2

T∑

t=1

ǫl(xt)
2

)
, (15)

whereǫl(xt) = ylt −mlR −∑R−1
p=1 (mlp −mlR)xpt, for l = 1, . . . , L. The gradient of (15) with respect tox is stacked as

∂f1
∂x

=

[
∂f1
∂x1

⊤

· · · ∂f1
∂xT

⊤
]⊤

∈ R(R−1)T×1,

where ∂f1
∂xt

=
[

∂f1
∂x1t

· · · ∂f1
∂x(R−1)t

]⊤
, with the entries given by

∂f1(x)

∂xrt
= 1

σ2

L∑

l=1

(mlR −mlr) exp
(

−1
2σ2

T∑

s=1

ǫl(xs)
2
)
ǫl(xt),

for all r = 1, . . . , (R − 1) and t = 1, . . . , T . Similarly, the functionρ
2‖x− zk − uk‖22 is expressed with respect tox as

φ(x)=
ρ

2

T
∑

t=1

(

1−
R−1
∑

p=1

xpt − zRt,k − uRt,k

)2

+
ρ

2

R−1
∑

p=1

(xpt−zpt,k−upt,k)
2

with the entries in its gradient∂φ∂x given by

∂φ(x)

∂xrt
= ρ
(
xrt +

R−1∑

p=1

xpt − 1 + zRt,k − zrt,k + uRt,k − urt,k

)
, (16)

for all r = 1, . . . , R − 1 and t = 1, . . . , T .

The solution of thez-update in line 4 Algorithm 1 becomes the projection ofxk+1 − uk onto the first orthant, as shown

in line 7 of Algorithm 2.

B. Sparsity-promoting unmixing algorithm

In order to apply the ADMM algorithm, we express the constrained optimization problem (12) as follows

f(x) = C(x) (17)

g(z) = ιRRT

+
(z) + λ‖z‖1

A = −I,B = I and c = 0.
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Algorithm 2 Correntropy-based unmixing with full-constraints (CUSAL-FC)
1: Initialize k = 0, ρ > 0, η > 0, σ > 0; x0, z0 andu0;

2: repeat

3: repeat

4: xk+1 = xk+1 − η( ∂f1
∂xk+1

+ ∂φ
∂xk+1

);

5: until convergence

6: reformxk+1 usingxk+1;

7: zk+1 = max(0,xk+1 − uk);

8: uk+1 = uk − (xk+1 − zk+1);

9: k = k + 1;

10: until stopping criterion

By analogy with the previous case, thex-update in line 3 of Algorithm 1 is solved iteratively with the gradient descent

method and is given in Algorithm 3 lines 3-5. The gradient of (17) with respect tox is stacked by∂f
∂xt

, where

∂f

∂xt
= − 1

σ2

L∑

l=1

ǫl(xt) exp

(
−1

2σ2

T∑

s=1

(ǫl(xs))
2

)
m⊤

l∗,

for t = 1, . . . , T , whereǫl(xt) = ylt −
∑R

r=1 xrt mlr. Thez-update in line 4 Algorithm 1 involves solving

zk+1 = argmin
z

ιRRT

+
(z) + (λ/ρ)‖z‖1 +

1

2
‖z − xk+1 − uk‖22. (18)

In [13], the ADMM has been applied to solve variousℓ1-norm problems, including the well-known LASSO [30]. The only

difference between (18) and thez-update in LASSO is that in the latter, no non-negativity term ιR+RT (z) is enforced. In this

case, thez-update in LASSO is the element-wise soft thresholding operation

zk+1 = Sλ/ρ(xk+1 − uk),

where the soft thresholding operator [13] is defined by

Sb(ζ) =





ζ − b if ζ > b;

0 if ‖ζ‖ < b;

ζ + b if ζ < −b.

Following [12], it is straightforward to project the resultonto the nonnegative orthant in order to include the non-negativity

constraint, thus yielding

zk+1 = max(0, Sλ/ρ(xk+1 − uk)),

where the maximum function is element-wise. All these results lead to the correntropy-based unmixing algorithm with sparsity-

promoting, as summarized in Algorithm 3.
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Algorithm 3 Correntropy-based unmixing with sparsity-promoting (CUSAL-SP))
1: Initialize k = 0, ρ > 0, σ > 0, η > 0, λ > 0; x0, z0 andu0;

2: repeat

3: repeat

4: xk+1 = xk+1 − η
(

∂f
∂xk+1

+ ρ(xk+1 − zk − uk)
)

;

5: until convergence

6: zk+1 = max(0, Sλ/ρ(xk+1 − uk));

7: uk+1 = uk − (xk+1 − zk+1);

8: k = k + 1;

9: until stopping criterion

C. On the bandwidth determination and convergence

We apply a three-fold stopping criterion for Algorithms 2 and 3, according to [13], [12]: (i) the primal and dual residuals

are small enough, namely‖xk+1 − zk+1‖2 ≤ ǫ1 andρ‖zk+1 − zk‖2 ≤ ǫ2, whereǫ1 = ǫ2 =
√
RT × 10−5 as in [12], (ii) the

primal residual starts to increase,i.e., ‖xk+1 − zk+1‖2 > ‖xk − zk‖2, or (iii) the maximum iteration number is attained.

The bandwidthσ in the Gaussian kernel should be well-tuned. Note that a small value for this parameter punishes harder the

outlier bands, thus increasing the robustness of the algorithm to outliers [20]. Note that, in this study, the ADMM is applied to

address a nonconvex objective function, thus no convergence is guaranteed theoretically, according to [13]. Considering these

issues, we propose to fix the bandwidth empirically as summarized in Algorithm 4 and described next.

Following [20], [21], we first initialize the bandwidth parameter as a function of the reconstruction error, given by

σ2
0 =

θ

LT
‖Y −MXLS‖2F , (19)

where the parameterθ is chosen asθ = RT
2 in this study, andXLS is the least-squares solution (4). In the case of a result too

apart from that of least-squares solution, the parameter isaugmented byσ = 1.2σ, until that the condition ‖Y −MX‖F

‖Y −MXLS‖F
< 2

is satisfied. The algorithm divergence occurs if the stopping criterion (ii) is satisfied, namely the primal residual increases over

iterations. In this case, either the parameter is too large due to an overestimated initialization, or it is too small. Accordingly,

we either decrease it byσ = σ0/p, or increase it byσ = 1.2σ, until that the ADMM converges.

The nonconvexity of the problem requires a loop for tuning outside the ADMM. This leads to an algorithm more time-

consuming than the half-quadratic methods which transforms the original problem to a re-weighted NMF [19], [20]. However,

for half-quadratic with the expectation conditional maximization method (see details in [19]), although the parameter is updated

over iterations, it is around the initialization value thatis estimated from a formula similar to (19). When dealing with high

noise levels, this value is often not small enough to accountfor the influence brought by outliers. The parameter tuning step

in ADMM alleviates the parameter estimation problem to somedegree. This phenomenon is observed in the experiments in

the next sections.

Although the convergence is not proved theoretically, we will provide evidence in the experiments that the proposed ADMM

algorithm converges to stationary points and that the results have robustness with respect to the initializations.
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Algorithm 4 Tuning the bandwidth parameterσ
1: Initialize σ = σ0 using (19);p = 1;

2: Do CUSAL with Algorithm 2 or Algorithm 3;

3: if stopping criterion (i) or (iii) is satisfiedthen

4: if condition ‖Y −MX‖F

‖Y −MXLS‖F
< 2 is satisfied,then

5: σ∗ = σ (optimal value)

6: else

7: increaseσ = 1.2σ, and go to line 2

8: end if

9: else

10: if σ > 1000σ0 (due to the overestimatedσ0) then

11: p = p+ 1;

12: decreaseσ = σ0/p, and go to line 2

13: else

14: increaseσ = 1.2σ, and go to line 2

15: end if

16: end if

V. EXPERIMENTS WITH SYNTHETIC DATA

In this section, the performance of the proposed fully-constrained (CUSAL-FC) and sparsity-promoting (CUSAL-SP)

algorithms is evaluated on synthetic data. A comparative study is performed considering six state-of-the-art methodsproposed

for linear and nonlinear unmixing models.

• Fully-Constrained Least-Squares (FCLS) [9]: The FCLS is developed for the linear model. Enforcing both ANC and ASC

constraints, this technique yields the optimal abundance matrix in the least-squares sense.

• Sparse Unmixing by variable Splitting and Augmented Lagrangian (SUnSAL) [12]: This method is based on the ADMM.

Several variants are developed by including different constraints, with the fully-constrained SUnSAL-FCLS and the

sparsity-promoting SUnSAL-sparse.

• The Bayesian algorithm for Generalized Bilinear Model (BayGBM) [31], [32]: This method estimates the abundances

with the generalized bilinear model (GBM), which adds second-order interactions between endmembers to the linear

model, yielding the model

yt = Mxt +

R−1∑

i=1

R∑

j=i+1

γij,txitxjt(mi ⊙mj) + nt,

where0 ≤ γij,t ≤ 1 controls the interactions between endmembersmi andmj , and⊙ is the element-wise product. The

BayGBM considers both ANC and ASC.

• Kernel Fully-Constrained Least-Squares (KFCLS) [15]: This method generalizes FCLS, by replacing the innerproduct

with a kernel function. In the following, the Gaussian kernel is applied for simulation.
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Fig. 2. TheR = 3 (left) and6 (right) USGS signatures chosen for simulation.

• Nonnegative Matrix Factorization with a Maximum Correntropy Criterion (NMF-MCC) [19]: This NMF-based method

maximizes the correntropy between the input matrix and the product of the two matrices to estimate in an unsupervised

manner. The resulting optimization problem is solved usingthe half-quadratic technique and the expectation conditional

maximization method.

• Correntropy-based NMF promoted byℓ1-norm (ℓ1-CENMF) [21]: This method improves the NMF-MCC by including

the ℓ1-norm of the second unknown matrix to the objective function, for the sake of a sparse representation. Similar to

the NMF-MCC, the half-quadratic strategy is applied to solve the optimization problem.

• For fair comparison, the supervised cases of NMF-MCC andℓ1-CENMF are considered in the experiments, by setting

the endmember matrices as the actual ones.

A. Performance of CUSAL-FC (fully-constrained algorithm)

We first compare the fully-constrained CUSAL-FC, presentedin IV-A, with the state-of-the-art methods. Two sets of

experiments are performed, mainly considering the influence of the noise level and the number of endmembers.

Each image, of50 × 50 pixels, is generated using the linear mixing model (1). The Gaussian noise is added as in [21]

where the noise levels, represented by SNR, vary across the bands to simulate the cases of real hyperspectral images. The

R ∈ {3, 6} endmembers, as shown in Fig. 2, are drawn from the USGS digital spectral library [33]. These endmembers are

defined overL = 244 continuous bands with the wavelength ranging from 0.2µm to 3.0µm. The abundance vectorsxt are

uniformly generated using a Dirichlet distribution as in [33], [34].

The unmixing performance is evaluated using the abundance root mean square error (RMSE) [31], [35], defined by

RMSE =

√√√√ 1

RT

T∑

t=1

‖xt − x̂t‖2,

wherex̂t is the estimated abundance vector.

In the first set of experiments, the SNR of bands are generatedusing the normal distribution SNR∼ N (SNR, ǫ2), with

SNR∈ {10, 20, 30, 40, 50} andǫ = 5 according to [21]. TABLE II and III illustrate the average ofRMSE over 10 Monte-Carlo

realizations, respectively forR = 3 andR = 6. It is easy to see that, when the average noise level is relatively high with

SNR= 10 and20, the proposed CUSAL-FC algorithm outperforms all the comparing methods in terms of RMSE, for different

numbers of endmembers. When the average noise level is relatively low, namelySNR= 40 and50, the proposed CUSAL-FC

is able to provide comparable results as the least squares approaches,e.g., FCLS and SUnSAL-FCLS. It is also shown that
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TABLE II

COMPARISON OFRMSE (×10−2) WITH DIFFERENT SNR,FORR = 3

SNR= 10 SNR= 20 SNR= 30 SNR= 40 SNR= 50

FCLS 10.18 2© 3.86 2© 1.20 2© 0.41 1© 0.12

SUnSAL-FCLS 10.17 2© 3.86 2© 1.20 2© 0.41 1© 0.12

BayGBM 10.23 3.88 2© 1.20 0.42 0.16

KFCLS 12.64 4.43 1.42 0.55 2© 0.13

NMF-MCC 13.73 5.53 1.95 1© 0.38 0.15

ℓ1-CENMF 2© 9.91 4.42 1.28 0.42 0.15

CUSAL-FC 1© 7.92 1© 3.03 1© 1.15 2© 0.41 1© 0.12

TABLE III

COMPARISON OFRMSE (×10−2) WITH DIFFERENT SNR,FORR = 6

SNR= 10 SNR= 20 SNR= 30 SNR= 40 SNR= 50

FCLS 2© 9.04 5.14 2.05 1© 0.70 1© 0.24

SUnSAL-FCLS 2© 9.04 5.14 2.05 1© 0.70 1© 0.24

BayGBM 9.05 5.14 2.04 1© 0.70 1© 0.24

KFCLS 9.53 6.06 2.20 0.76 2© 0.25

NMF-MCC 9.49 5.28 2.08 2© 0.74 0.33

ℓ1-CENMF 9.45 2© 5.06 1© 1.98 2© 0.74 0.32

CUSAL-FC 1© 7.87 1© 4.63 2© 2.02 1© 0.70 1© 0.24

the performance of the proposed algorithm improves when increasing the SNR.

The second set of experiments is conducted in order to examine the performance of the proposed method in presence of

highly noisy bands, which is a common phenomenon for real hyperspectral images. To this end, the data is similarly generated

as previously described, where two normal distributions SNR ∼ N (SNR1, ǫ
2) and SNR∼ N (SNR2, ǫ

2) are used, withǫ = 5.

While most bands have a common average noisy level withSNR1 = 30, there are 40 out of 224 bands randomly chosen to

be severely corrupted by high level average noise withSNR2 ∈ {5, 10, 15}. TABLE IV and V report the average of RMSE

over 10 Monte-Carlo realizations, respectively forR = 3 andR = 6. We observe that the proposed CUSAL-FC algorithm

is the most effective among all the comparing methods when the data contains highly noisy bands, regardless of number of

endmembers.

We investigate the convergence property of the proposed ADMM algorithm with CUSAL-FC, and examine its robustness

with respect to the initialization. To this end, a toy image of 50 × 50 pixels is generated using the linear mixing model (1),

where the Gaussian noise with SNR= 30 is added. TheR = 3 endmembers, as shown in Fig. 2 (left), is considered while the

abundance vectorsxt are uniformly generated using a Dirichlet distribution. The changes of the objective function value, the

primal and dual residuals over the first 50 iterations are given in Fig. 3. A rapid drop of objective function and residualsfor

the first 20 iterations is observed, signifying that the proposed ADMM algorithm converges to stationary points with modest
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TABLE IV

COMPARISON OFRMSE (×10−2) WITH SNR1 = 30 AND DIFFERENT SNR2 , FORR = 3

SNR2 = 5 SNR2 = 10 SNR2 = 15

FCLS 7.66 4.86 2.99

SUnSAL-FCLS 7.66 4.85 2.99

BayGBM 7.70 4.90 3.00

KFCLS 10.45 5.85 4.45

NMF-MCC 7.50 4.82 2.91

ℓ1-CENMF 2© 5.33 2© 3.08 2© 2.17

CUSAL-FC 1© 1.75 1© 1.66 1© 1.73

TABLE V

COMPARISON OFRMSE (×10−2) WITH SNR1 = 30 AND DIFFERENT SNR2 , FORR = 6

SNR2 = 5 SNR2 = 10 SNR2 = 15

FCLS 8.00 6.27 4.37

SUnSAL-FCLS 8.00 6.27 4.37

BayGBM 8.02 6.29 4.38

KFCLS 8.56 7.81 4.44

NMF-MCC 8.08 6.22 4.31

ℓ1-CENMF 2© 7.15 2© 5.21 2© 3.63

CUSAL-FC 1© 3.98 1© 3.73 1© 3.35

accuracy. We examine the robustness of CUSAL-FC with respect to the initialization, and compare it with the half-quadratic

approach proposed for maximum correntropy criterion, namely NMF-MCC [19]. The elements inX are identically initialized

for each method, using (i) uniform distributionxrt ∼ U(0, 1); (ii) normal distributionxrt ∼ N (0.5, 0.1) combined with

rounding all the negative values up to zero; and (iii) normaldistributionxrt ∼ N (0.5, 0.2) combined with rounding all the

negative values up to zero. Ten Monte-Carlo realizations are performed, leading to the averages and deviations of RMSE given

in TABLE VI. In contrast to NMF-MCC, these results show that the proposed ADMM algorithm provides good results even

when considering different initializations.1

1It is not reasonable to directly compare the objective function values of CUSAL-FC and NMF-MCC, since these two methods address distinct optimization

problems involving different values of parameterσ and different constraints.

TABLE VI

THE AVERAGES AND DEVIATIONS OFRMSE (×10−2) WITH RESPECT TO DIFFERENT INITIALIZATIONS

CUSAL-FC NMF-MCC

xrt ∼ U(0, 1) 1.16±2.5× 10−2 1.27±3.5 × 10−2

xrt ∼ N (0.5, 0.1) 0.09±0.2× 10−2 0.11±0.1 × 10−2

xrt ∼ N (0.5, 0.2) 0.09±0.5× 10−2 4.70±4.0 × 10−2
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Fig. 3. Illustration of the convergence property of CUSAL-FC, by plotting the objective function value, the primal and dual residuals over the first 50

iterations, using a fixed value ofµ=0.01.

B. Performance of CUSAL-SP (sparsity-promoting algorithm)

The performance of the proposed sparsity-promoting CUSAL-SP, presented in IV-B, is compared with two sparsity-promoting

methods: SUnSAL-sparse andℓ1-CENMF, on a series of data with sparse abundance matrices. We study the influence of (i) the

noise level over bands, namelySNR, and (ii) the sparsity level of the abundances. Each image, of 15× 15 pixels, is generated

by the linear mixture model. The endmember matrix is composed by R = 62 USGS signatures, where the angle between any

two different endmembers is larger than10◦ [25]. The K nonzero entries in each abundance vectorxt are generated by a

Dirichlet distribution. The value ofK (i.e., the indicator of sparsity level) ranges from 2 to 15, while the average level of

noiseSNR∈ {10, 20, 30}. A rough measure of the sparsity level of the unknown abundance matrix from the input spectra [36]

takes the form

ŝ =
1√
L

L∑

l=1

√
T − ‖yl∗‖1/‖yl∗‖2√

T − 1
.

For all the algorithms, the sparsity-promoting parameterλ is adjusted using the setŝ×{10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3}.

The unmixing performance with the sparsity-promoting algorithms is evaluated using the signal-to-reconstruction error,

measured in decibels, according to [12], [25]. It is defined by

SRE = 10 log10

( ∑T
t=1 ‖xt‖22∑T

t=1 ‖xt − x̂t‖22

)
.

The results, averaged over ten Monte-Carlo realizations, are illustrated in Fig. 4. Considering that the abundance matrix under

estimation is sparse at different levels, we conclude the following: CUSAL-SP always outperforms SUnSAL-SP. When dealing

with high noise levels, namelySNR = 10 and 20, CUSAL-SP outperformsℓ1-CENMF in most cases (except forK = 12

and15 with SNR= 20). When the noise level is relatively low withSNR= 30, the CUSAL-SP provides the best unmixing

quality with the highest SRE value forK < 7, while ℓ1-CENMF leads to the best unmixing quality especially forK > 10.

Still, the proposed CUSAL-SP always outperforms SUnSAL-SP, which is not the case ofℓ1-CENMF.

VI. EXPERIMENTS WITH REAL DATA

This section presents the performance of the proposed algorithms on a real hyperspectral image. We consider a250× 190

sub-image taken from the Cuprite mining image, acquired by the AVIRIS sensor when flying over Las Vegas, Nevada, USA.

The image has been widely investigated in the literature [7], [25]. The raw data containsL = 224 bands, covering a wavelength
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Fig. 4. The averaged signal-to-reconstruction error (SRE)with respect to the sparsity levelK, averaged over ten Monte-Carlo realizations. Comparison for

various average noise levelSNR.

range0.4− 2.5µm. Among, there are37 relatively noisy ones with low SNR, namely the bands1− 3, 105− 115, 150− 170,

and223− 224. The geographic composition of this area is estimated to include up to14 minerals [3]. Neglecting the similar

signatures, we consider12 endmembers as often investigated in the literature [7], [37]. The VCA technique is first applied to

extract these endmembers on the clean image withL = 187 bands. Starting fromL = 187 bands, the noisy bands, randomly

chosen from the bands1 − 3, 105 − 115, 150 − 170, and223 − 224, are gradually included to form a series of input data.

Therefore, the experiments are conducted withL = 187, 193, 199, 205, 211, 217, 223 and224 bands.

Since ground-truth abundances are unknown, the performance is measured with the averaged spectral angle distance (SAD)

between the input spectrayt and the reconstructed onesŷt, as illustrated in Fig. 5, where the SAD is defined by

SAD =
1

T

T∑

t=1

arccos

(
y⊤
t ŷt

‖yt‖‖ŷt‖

)
.

The estimated abundance maps using187, 205 and224 bands are given in Fig. 6, Fig. 7, and Fig. 8, respectively. Inabsence

of noisy bands (i.e., L = 187 bands), all the methods lead to satisfactory abundance maps, with NMF-MCC providing the

smallest SAD. As the number of noisy bands increases, especially from L = 199 to L = 224, the unmixing performance

of the state-of-the-art methods deteriorates drastically, while the proposed CUSAL yields stable SAD. The obtained results

confirm the good behavior of the proposed CUSAL algorithms and their robustness in presence of corrupted spectral bands.

The MATLAB R© (R2010) average implementation times per pixel in milliseconds are shown in TABLE VII, when experiments

are performed with allL = 224 bands. The estimated time for CUSAL-FC includes the estimation of the parameterσ.

TABLE VII

COMPUTATIONAL T IME (MS/PIXEL)

ON UNMIXING THE CUPRITE IMAGE USING224BANDS

SUnSAL-FCLS 0.89

FCLS 0.42

BayGBM 34.80

KFCLS 0.39

NMF-MCC 3.14

ℓ1-CENMF 5.54

CUSAL-FC 20.94
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Fig. 5. Cuprite image: The averaged spectral angle distance (SAD) using differentnumber of bands, computed without the noisy bands1 − 3, 105 −
115, 150 − 170, and223 − 224.

VII. C ONCLUSION

This paper presented a supervised unmixing algorithm basedon the correntropy maximization principle. Two correntropy-

based unmixing problems were addressed, the first with the non-negativity and sum-to-one constraints, and the second with

the non-negativity constraint and a sparsity-promoting term. The alternating direction method of multipliers (ADMM)was

investigated in order to solve the correntropy-based unmixing problems. The robustness of the proposed unmixing method was

validated on synthetic and real hyperspectral images. Future works include the generalization of the correntropy criterion to

account for the multiple reflection phenomenon [31], [38], [39], as well as incorporating nonlinear models [40].
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Fig. 7. Cuprite image: Estimated abundance maps using 205 bands, with 187 clean bands. Same legend as Fig. 6.
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