
Applied Numerical Mathematics 120 (2017) 82–96
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

A smoothing Newton method for absolute value equation

associated with second-order cone

Xin-He Miao a,1, Jian-Tao Yang a, B. Saheya b,2, Jein-Shan Chen c,∗,3

a Department of Mathematics, Tianjin University, China, Tianjin 300072, China
b College of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, PR China
c Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 May 2016
Received in revised form 26 February 2017
Accepted 28 April 2017
Available online 4 May 2017

Keywords:
Second-order cone
Absolute value equations
Smoothing Newton algorithm

In this paper, we consider the smoothing Newton method for solving a type of absolute
value equations associated with second order cone (SOCAVE for short), which is a
generalization of the standard absolute value equation frequently discussed in the literature
during the past decade. Based on a class of smoothing functions, we reformulate the
SOCAVE as a family of parameterized smooth equations, and propose the smoothing
Newton algorithm to solve the problem iteratively. Moreover, the algorithm is proved
to be locally quadratically convergent under suitable conditions. Preliminary numerical
results demonstrate that the algorithm is effective. In addition, two kinds of numerical
comparisons are presented which provides numerical evidence about why the smoothing
Newton method is employed and also suggests a suitable smoothing function for future
numerical implementations. Finally, we point out that although the main idea for proving
the convergence is similar to the one used in the literature, the analysis is indeed more
subtle and involves more techniques due to the feature of second-order cone.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The standard absolute value equation (AVE) is in the form of

Ax + B|x| = b, (1)

where A ∈ R
n×n , B ∈ R

n×n , B �= 0, and b ∈ R
n . Here |x| means the componentwise absolute value of vector x ∈ R

n . When
B = −I , where I is the identity matrix, the AVE (1) reduces to the special form:

Ax − |x| = b.

It is known that the AVE (1) was first introduced by Rohn in [38] and recently has been investigated by many researchers,
for example, Caccetta, Qu and Zhou [1], Hu and Huang [14], Jiang and Zhang [22], Ketabchi and Moosaei [23], Mangasarian
[25–32], Mangasarian and Meyer [34], Prokopyev [35], and Rohn [40].

* Corresponding author.
E-mail addresses: xinhemiao@tju.edu.cn (X.-H. Miao), zzlyyjt@163.com (J.-T. Yang), saheya@imnu.edu.cn (B. Saheya), jschen@math.ntnu.edu.tw

(J.-S. Chen).
1 The author’s work is supported by National Natural Science Foundation of China (No. 11471241).
2 The author’s work is supported by Natural Science Foundation of Inner Mongolia (Award Number: 2014MS0119).
3 The author’s work is supported by Ministry of Science and Technology, Taiwan (No. 104-2115-M-003-011-MY2).
http://dx.doi.org/10.1016/j.apnum.2017.04.012
0168-9274/© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:xinhemiao@tju.edu.cn
mailto:zzlyyjt@163.com
mailto:saheya@imnu.edu.cn
mailto:jschen@math.ntnu.edu.tw
http://dx.doi.org/10.1016/j.apnum.2017.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2017.04.012&domain=pdf

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 83
In particular, Mangasarian and Meyer [34] show that the AVE (1) is equivalent to the bilinear program, the generalized
LCP (linear complementarity problem), and the standard LCP provided 1 is not an eigenvalue of A. With these equivalent
reformulations, they also show that the AVE (1) is NP-hard in its general form and provide existence results. Prokopyev
[35] further improves the above equivalence which indicates that the AVE (1) can be equivalently recast as LCP without any
assumption on A and B , and also provides a relationship with mixed integer programming. In general, if solvable, the AVE
(1) can have either unique solution or multiple (e.g., exponentially many) solutions. Indeed, various sufficiency conditions
on solvability and non-solvability of the AVE (1) with unique and multiple solutions are discussed in [34,35,39]. Some
variants of the AVE, like the absolute value equation associated with second-order cone and the absolute value programs,
are investigated in [16] and [41], respectively.

In this paper, we target another type of absolute value equation which is a natural extension of the standard AVE (1).
More specifically the following absolute value equation associated with second-order cones, abbreviated as SOCAVE, as
below:

Ax + B|x| = b, (2)

where A, B ∈ R
n×n and b ∈ R

n are the same as those in (1); |x| denotes the absolute value of x coming from the square
root of the Jordan product “◦” of x and x. What is the difference between the standard AVE (1) and the SOCAVE (2)?
Their mathematical formats look the same. In fact, the main difference is that |x| in the standard AVE (1) means the
componentwise |xi | of each xi ∈ R, i.e., |x| = (|x1|, |x2|, · · · , |xn|)T ∈ R

n; however, |x| in the SOCAVE (2) denotes the vector
satisfying

√
x2 := √

x ◦ x associated with second-order cone under Jordan product. To understand its meaning, we need to
introduce the definition of second-order cone (SOC). The second-order cone in Rn (n ≥ 1), also called the Lorentz cone, is
defined as

Kn :=
{
(x1, x2) ∈R×R

n−1 | ‖x2‖ ≤ x1

}
,

where ‖ · ‖ denotes the Euclidean norm. If n = 1, then Kn is the set of nonnegative reals R+ . In general, a general second-
order cone K could be the Cartesian product of SOCs, i.e.,

K := Kn1 × · · · ×Knr .

For simplicity, we focus on the single SOC Kn because all the analysis can be carried over to the setting of Cartesian product.
The SOC is a special case of symmetric cones and can be analyzed under Jordan product, see [11]. In particular, for any two
vectors x = (x1, x2) ∈R ×R

n−1 and y = (y1, y2) ∈R ×R
n−1, the Jordan product of x and y associated with Kn is defined as

x ◦ y :=
[

xT y
y1x2 + x1 y2

]
.

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a main source of complication in the
analysis of optimization problems involved SOC, see [3,10,12] and references therein for more details. The identity element
under this Jordan product is e = (1, 0, ..., 0)T ∈ R

n . With these definitions, x2 means the Jordan product of x with itself,
i.e., x2 := x ◦ x; and

√
x with x ∈ Kn denotes the unique vector such that

√
x ◦ √

x = x. In other words, the vector |x| in the
SOCAVE (2) is computed by

|x| := √
x ◦ x.

As mentioned earlier, the significance of the AVE (1) arises from the fact that the AVE is capable to formulate many
optimization problems (also see [26,30,32,34,35]), such as, linear programs, quadratic programs, bimatrix games, and so on.
Moreover, the absolute value equations is equivalent to the linear complementarity problem [34]. Accordingly, we see that
the SOCAVE (2) plays similar role in various optimization problems involved second-order cones. For solving the standard
AVE (1), there are many various numerical methods proposed in the literature (see [1,21,22,25–27,35,43]). As for the SOCAVE
(2), Hu, Huang and Zhang [16] propose a generalized Newton method for solving the SOCAVE (2). It is well known that
smoothing-type algorithms is a powerful tool for solving many optimization problems, for example, the linear and nonlinear
complementarity problems [3,12,19,20,24], the system of equalities and inequalities [17,42]. In this paper, we are interested
in a smoothing Newton method for solving the SOCAVE (2). Our numerical results also support that the smoothing Newton
method is a better way than the generalized Newton method employed in [16]. That is why we adopt this algorithm as the
main tool to do numerical implementations. In addition, we have shown that the proposed smoothing Newton method is
locally quadratically convergent under suitable condition. We report some preliminary numerical results to show that the
method is efficient. Moreover, numerical comparisons based on various value of p are presented as well.

To close this section, we say a few words about notations and the organization of this paper. As usual, Rn denotes the
space of n-dimensional real column vectors. R+ and R++ denote the nonnegative and positive reals. For any x, y ∈ R

n ,
the Euclidean inner product is denoted 〈x, y〉 = xT y, and the Euclidean norm ‖x‖ is denoted as ‖x‖ = √〈x, x〉. This paper
is organized as follows. In Section 2, we briefly describe some concepts and properties on second-order cone. Besides, we
review Jordan product and the spectral decomposition for elements x and y in Rn . In Section 3, we introduce a smoothing
function of the absolute value |x|, and study the Jacobian matrix of the smoothing function. In Section 4, we propose
a smoothing Newton algorithm for solving the SOCAVE (2), and discuss the convergence of the proposed method under
suitable conditions. In Section 5, the preliminary numerical results and numerical comparisons are given.

84 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
2. Preliminaries

In this section, we recall some basic concepts and background materials regarding the second-order cone, which will be
extensively used in the subsequent analysis. More details can be found in [3,10–12,16]. First, we recall the expression of the
spectral decomposition of x with respect to SOC. For x = (x1, x2) ∈ R ×R

n−1, the spectral decomposition of x with respect to
SOC is given by

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (3)

where λi(x) = x1 + (−1)i‖x2‖ for i = 1, 2 and

u(i)
x =

⎧⎪⎨
⎪⎩

1
2

(
1, (−1)i xT

2‖x2‖
)T

if ‖x2‖ �= 0,

1
2

(
1, (−1)iωT

)T
if ‖x2‖ = 0,

(4)

with ω ∈ R
n−1 being any vector satisfying ‖ω‖ = 1. The two scalars λ1(x) and λ2(x) are called spectral values of x; while

the two vectors u(1)
x and u(2)

x are called the spectral vectors of x. Moreover, it is obvious that the spectral decomposition of
x ∈R

n is unique if x2 �= 0.

Lemma 2.1. For any x = (x1, x2) ∈R ×R
n−1 with the spectral decomposition given as in (3)-(4), the following results hold.

(a) u(1)
x ◦ u(2)

x = 0 and u(i)
x ◦ u(i)

x = u(i)
x for i = 1, 2;

(b) ‖u(1)
x ‖2 = ‖u(2)

x ‖2 = 1
2 and ‖x‖2 = 1

2 (λ2
1(x) + λ2

2(x)).

Proof. The property can be verified directly or can be found in [3,11,12,16,10]. �
In the next content, we talk about the projection onto second-order cone. We let x+ be the projection of x onto SOC Kn ,

and x− be the projection of −x onto the dual cone (Kn)∗ of Kn , where the dual cone (Kn)∗ is defined by (Kn)∗ := {y ∈
R

n | 〈x, y〉 ≥ 0, ∀x ∈ Kn}. In fact, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn . Due to the special structure of SOC Kn , the
explicit formula of projection of x = (x1, x2) ∈R ×R

n−1 onto Kn is obtained in [3,10–13] as below:

x+ =
⎧⎨
⎩

x if x ∈ Kn,

0 if x ∈ −Kn,

u otherwise,

where

u =
[x1+‖x2‖

2(
x1+‖x2‖

2

)
x2‖x2‖

]
.

Similarly, the expression of x− is in the form of

x− =
⎧⎨
⎩

0 if x ∈ Kn,

−x if x ∈ −Kn,

w otherwise,

where

w =
[− x1−‖x2‖

2(
x1−‖x2‖

2

)
x2‖x2‖

]
.

Together with the spectral decomposition of x, it is shown that x = x+ + x− and the expression of x+ has the form:

x+ = (λ1(x))+u(1)
x + (λ2(x))+u(2)

x ,

and

x− = (−λ1(x))+u(1)
x + (−λ2(x))+u(2)

x ,

where (α)+ = max{0, α} for α ∈R.
Next, we talk about the expression of |x| associated with SOC. There is an alternative way via the so-called SOC-function

to obtain the expression of |x|, which can be found in [2,4]. More specifically, for any x ∈ R
n , we define the absolute value

|x| of x with respect to SOC as |x| := x+ + x− . In fact, in the setting of SOC, the form |x| = x+ + x− is equivalent to the form

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 85
|x| = √
x ◦ x. Combining the above expression of x+ and x− , it cab be verified that the expression of the absolute value |x|

is in the form of

|x| = [(λ1(x))+ + (−λ1(x))+
]
u(1)

x + [(λ2(x))+ + (−λ2(x))+
]
u(2)

x

= ∣∣λ1(x)
∣∣u(1)

x + ∣∣λ2(x)
∣∣u(2)

x .

To end this section, we point out the relation between SOCAVE and SOCLCP (second-order cone linear complementarity
problem). In [16], it was shown that SOCAVE (2) is equivalent to the following SOCLCP: find x, y ∈ R

n such that

Mx + P y = c, and x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0,

where M, P ∈R
n×n are matrices and c ∈ R

n . However, the above is not a standard SOCLCP because there exists the equations
Mx + P y = c therein. As below, we show that the SOCAVE (2) can be further converted into a standard SOCLCP.

Theorem 2.1. The SOCAVE (2) can be reduced to the second-order cone linear complementarity problem (SOCLCP):

v ∈ Kn ×Kn ×Kn, w = Q v + q ∈ Kn ×Kn ×Kn and 〈v, w〉 = 0, (5)

where

Q :=
⎡
⎣ −I 2I 0

A B − A 0
−A A − B 0

⎤
⎦ , v :=

⎡
⎣ 2x+

|x|
0

⎤
⎦ and q :=

⎡
⎣ 0

−b
b

⎤
⎦ . (6)

Proof. By looking into (6), we have

w = Q v + q =
⎡
⎣ 2x−

Ax + B|x| − b
−Ax − B|x| + b

⎤
⎦ .

Plugging this into SOCLCP (5) implies that

Ax + B|x| − b ∈ Kn and − Ax − B|x| + b ∈ Kn.

Since Kn is pointed, it follows that Ax + B|x| − b = 0. On the other hand, the above argument is reversible. Thus, we show
that SOCAVE (2) is equivalent to second-order cone linear complementarity problem. �
Remark 2.1. From Theorem 2.1, it follows that we can also solve the SOCAVE (2) by employing many efficient algorithms
for solving SOCLCP (5). Nonetheless, when we apply the Newton method to solve SOCLCP, it still needs reformulate it as
smooth equations or nonsmooth equations. This means that we need twice reformulations if we follow this way. In view of
this, in this paper, we reformulate the SOCAVE (2) directly as the smooth equations, and solve the equations by smoothing
Newton method.

3. Smoothing functions associate with SOCAVE

In this paper, we employ the smoothing Newton method for solving the SOCAVE (2). To this end, we need to adopt a
smoothing function. Due to the non-differentiability of |α| for α ∈ R, we consider a class of smoothing functions for the
absolute value function |α|. More specifically, we define the function φp(·, ·) :R2 → R as

φp(a,b) := p
√|a|p + |b|p, p > 1. (7)

This class of functions is extracted from the so-called generalized Fischer–Burmeister function φp(a, b) = p
√|a|p + |b|p −

(a + b), which is heavily studied in many references [5–9,15]. For convenience, we still use the notation φp even it is no
longer exactly the same as the generalized Fischer–Burmeister function.

Lemma 3.1. Let φp :R2 → R be defined as in (7). Then, the following hold.

(a) φp(a, 0) = |a| and φp(0, b) = |b|;
(b) φp(·, ·) is Lipschitz continuous on R2;
(c) φp(·, ·) is strongly semismooth on R2;

86 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
(d) φp(a, b) is continuously differentiable for any (a, b) �= (0, 0) ∈ R
2 with

∂φp(a,b)

∂a
= sgn(a)|a|p−1

(φp(a,b))p−1
and

∂φp(a,b)

∂b
= sgn(b)|b|p−1

(φp(a,b))p−1
,

where the function sgn(·) is defined by sgn(α) :=
⎧⎨
⎩

1 if α > 0,

0 if α = 0,

−1 if α < 0.

Proof. Please refer to [5–9,15] for a proof. �
According to Lemma 3.1, it follows that for any a ∈ R and a → 0, we have φp(a, b) → |b|. Therefore, combining the

spectral decomposition of x and the function φp , we define a vector-valued smoothing function �p :R ×R
n → R

n as

�p(μ, x) = φp(μ,λ1(x))u(1)
x + φp(μ,λ2(x))u(2)

x

= p
√|μ|p + |λ1(x)|p u(1)

x + p
√|μ|p + |λ2(x)|p u(2)

x ,

where μ ∈R is a parameter, and λ1(x), λ2(x) are the spectral values of x. From Lemma 3.1, it is easy to verify that

lim
μ→0

�p(μ, x) = |λ1(x)| u(1)
x + |λ2(x)| u(2)

x = |x|.
In other words, the function �p(μ, x) is a uniformly smoothing function of |x| associated with SOC. With this function, for
the SOCAVE (2), we further define a function H(μ, x) : R ×R

n → R ×R
n by

H(μ, x) =
[

μ
Ax + B�p(μ, x) − b

]
, ∀μ ∈R, x ∈R

n. (8)

Then, we observe that

H(μ, x) = 0 ⇐⇒ μ = 0 and Ax + B�p(μ, x) − b = 0

⇐⇒ Ax + B|x| − b = 0 and μ = 0.

This indicates that x is a solution to the SOCAVE (2) if and only if (μ, x) is a solution to the equation H(μ, x) = 0. In fact,
we often choose μ ∈ R++ . Applying Lemma 3.1 again, it is not difficult to show that the function H(μ, x) is continuously
differentiable on R++ ×R

n . From direct calculation, we can also obtain the explicit formula of the Jacobian matrix for the
function H as below:

H ′(μ, x) =
[

1 0

B
∂�p(μ,x)

∂μ A + B
∂�p(μ,x)

∂x

]
(9)

for all (μ, x) ∈R++ ×R
n with x = (x1, x2) ∈R ×R

n−1, where

∂�p(μ, x)

∂μ
= ∂φp(μ,λ1(x))

∂μ
u(1)

x + ∂φp(μ,λ2(x))

∂μ
u(2)

x

= μp−1

[φp(μ,λ1(x))]p−1
u(1)

x + μp−1

[φp(μ,λ2(x))]p−1
u(2)

x

and

∂�p(μ, x)

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sgn(x1)|x1|p−1[p√μp+|x1|p
]p−1 I if x2 = 0,⎡

⎣ b c
xT

2‖x2‖
c x2‖x2‖ aI + (b − a)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a = φp(μ,λ2(x)) − φp(μ,λ1(x))

λ2(x) − λ1(x)
,

b = 1

2

(
sgn(λ2(x))|λ2(x)|p−1

[φp(μ,λ2(x))]p−1
+ sgn(λ1(x))|λ1(x)|p−1

[φp(μ,λ1(x))]p−1

)
, (10)

c = 1

2

(
sgn(λ2(x))|λ2(x)|p−1

[φp(μ,λ2(x))]p−1
− sgn(λ1(x))|λ1(x)|p−1

[φp(μ,λ1(x))]p−1

)
.

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 87
4. Smoothing Newton method

In this section, we investigate the smoothing algorithm based on the smoothing function �p(μ, x) for solving the SOCAVE
(2), and show the convergence properties of the considered algorithm. First, we present the generic framework of the
smoothing algorithm.

Algorithm 4.1 (A smoothing Newton algorithm).

Step 0 Choose δ ∈ (0, 1), σ ∈ (0,1), and μ0 ∈ R++ , x0 ∈ R
n . Set z0 := (μ0, x0), e := (1, 0) ∈ R × R

n−1. Choose β > 1
satisfying min{1, ‖H(z0)‖2} ≤ βμ0. Set k := 0.

Step 1 If ‖H(zk)‖ = 0, stop. Otherwise, set τk := min{1, ‖H(zk)‖}.

Step 2 Compute �zk = (�μk, �xk) ∈R ×R
n by

H(zk) + H ′(zk)�zk = 1

β
τ 2

k e, (11)

where H ′(zk) denotes the Jacobian matrix of H(zk) at (μk, xk) given by (9).

Step 3 Let αk be the maximum of the values 1, δ, δ2, · · · such that

‖H(zk + αk�zk)‖ ≤
[

1 − σ(1 − 1

β
)αk

]
‖H(zk)‖. (12)

Step 4 Set zk+1 := zk + αk�zk and k := k + 1. Go to Step 1.

In order to explain that Algorithm 4.1 is well defined, we have to prove that the system of Newton equation (11) is
solvable, and the line search (12) is well-defined. To this end, we need the next two technical lemmas.

Lemma 4.1. For any M, N ∈ R
n×n, σmin(M) > σmax(N) if and only if σmin(MT M) > σmax(N T N). In addition, if σmin(MT M) >

σmax(N T N), then MT M − N T N is positive definite. Here σmin(M) denotes the minimum singular value of M, and σmax(N) denotes
the maximum singular value of N.

Proof. The proof is straightforward or can be found in usual textbook of matrix analysis, so we omit it here. �
Lemma 4.2. Let A, S ∈ R

n×n and A be symmetric. Suppose that the eigenvalues of A and S S T are arranged in non-increasing order.
Then, for each k = 1, 2, · · · , n, there exists a nonnegative real number θk such that

λmin(S S T) ≤ θk ≤ λmax(S S T) and λk(S A S T) = θkλk(A).

Proof. Please see [18, Corollary 4.5.11] for a proof. �
In order to show that the Jacobian matrix H ′(μ, x) in Newton equation (11) is nonsingular for any μ > 0. We need the

following assumption:

Assumption 4.1. For the SOCAVE (2), it holds σmin(A) > σmax(B).

In fact, under the condition of Assumption 4.1, the SOCAVE (2) has a unique solution, which is verified in [33].

Theorem 4.1. Let H be defined as in (8). Suppose that Assumption 4.1 holds. Then, the Jacobian matrix H ′(μ, x) in Newton equa-
tions (11) is nonsingular for any μ > 0.

Proof. From the expression of H ′(μ, x) given as in (9), we know that H ′(μ, x) is nonsingular if and only if the matrix
A + B ∂�(μ,x)

∂x is nonsingular. Thus, it suffices to show that the matrix A + B ∂�(μ,x)
∂x is nonsingular. Suppose not, i.e., there

exists a vector 0 �= v ∈ R
n such that[

A + B
∂�(μ, x)

∂x

]
v = 0.

This implies that

v T AT Av = v T
[

∂�(μ, x)
]T

BT B
∂�(μ, x)

v. (13)

∂x ∂x

88 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
For convenience, we denote C := ∂�(μ,x)
∂x . Then, it follows that v T AT Av = v T C T BT BC v . By Lemma 4.2, there exists a con-

stant θ̂ such that

λmin(C T C) ≤ θ̂ ≤ λmax(C T C) and λmax(C T BT BC) = θ̂λmax(BT B).

Note that if we can prove that 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1, we have λmax(C T BT BC) ≤ λmax(BT B). Then, by the assump-
tion that the minimum singular value of A strictly exceeds the maximum singular value of B , and applying Lemma 4.1,
we obtain v T AT Av > v T C T BT BC v . This contradicts the formula (13), which shows the Jacobian matrix H ′(μ, x) in Newton
equations (11) is nonsingular for μ > 0.

Thus, as discussed above, we only need to prove 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1. For x2 = 0, we compute that C =
sgn(x1)|x1|p−1[
p√μp+|x1|p

]p−1 I . Then, it is clear that 0 < λ(C T C) < 1 for μ > 0. For x2 �= 0, using the fact that the matrix MT M is always

positive semidefinite for any matrix M ∈ R
m×n , we see that the inequality λmin(C T C) ≥ 0 always holds. In order to prove

that λmax(C T C) ≤ 1, we need to further prove that the matrix I − C T C is positive semidefinite. To see this, note that

I − C T C =
⎡
⎣ 1 − b2 − c2 −2bc

xT
2‖x2‖

−2bc x2‖x2‖ (1 − a2)I + (a2 − b2 − c2)
x2xT

2
‖x2‖2

⎤
⎦ .

Because b2 + c2 = 1

2

[
|λ2(x)|2(p−1)

[φp(μ,λ2(x))]2(p−1)
+ |λ1(x)|2(p−1)

[φp(μ,λ1(x))]2(p−1)

]
<

1

2
·2 = 1 for μ > 0, we have 1 −b2 − c2 > 0. Moreover,

the Schur complement of 1 − b2 − c2 has the form of

(1 − a2)I + (a2 − b2 − c2)
x2xT

2

‖x2‖2
− 4b2c2

1 − b2 − c2

x2xT
2

‖x2‖2

= (1 − a2)

(
I − x2xT

2

‖x2‖2

)
+
(

1 − b2 − c2 − 4b2c2

1 − b2 − c2

)
x2xT

2

‖x2‖2
. (14)

On the other hand, |λi(x)| < φp(μ, λi(x)) (i = 1, 2) for μ > 0, we have∣∣φp(μ,λ2(x)) − φp(μ,λ1(x))
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣
|λ2(x)|p − |λ1(x)|p

p∑
i=1

[
φp(μ,λ2(x))

]p−i [
φp(μ,λ1(x))

]i−1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

(|λ2(x)| − |λ1(x)|)
p∑

i=1

|λ2(x)|p−i |λ1(x)|i−1

p∑
i=1

[
φp(μ,λ2(x))

]p−i [
φp(μ,λ1(x))

]i−1

∣∣∣∣∣∣∣∣∣∣∣
< ||λ2(x)| − |λ1(x)||
≤ |λ2(x) − λ1(x)|.

This together with (10) implies that 1 − a2 > 0 for any μ > 0. In addition, for any μ > 0, we observe that

(1 − b2 − c2)2 − 4b2c2 = (1 − (b − c)2)(1 − (b + c)2)

=
[

1 − |λ1(x)|2(p−1)[
φp(μ,λ1(x))

]2(p−1)

]
·
[

1 − |λ2(x)|2(p−1)[
φp(μ,λ2(x))

]2(p−1)

]

> 0,

where the inequality holds due to |λi(x)| < φp(μ, λi(x)) for i = 1, 2 and μ > 0. With all of these, we see that the Schur

complement of 1 − b2 − c2 given as in (14) is a linear positive combination of the matrices
(

I − x2xT
2

‖x2‖2

)
and x2xT

2
‖x2‖2 , which

yields that the Schur complement (14) of 1 − b2 − c2 is positive semidefinite. Hence, the matrix I − C T C is also positive
semidefinite, which is equivalent to saying 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1. Thus, the proof is complete. �

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 89
Theorem 4.1 indicates the Newton equation (11) in Algorithm 4.1 is solvable. It paves a way to show that the linear
search (12) in Algorithm 4.1 is well-defined which is given in Theorem 4.2 as below. Indeed, the proof is very similar to the
one in [17, Remark 2.1 (v)], we only present it here and omit its proof.

Theorem 4.2. Suppose that Assumption 4.1 holds. Then, for �z ∈ R ×R
n given by (11), the linear search (12) is well-defined.

Next, we discuss the convergence of Algorithm 4.1. To this end, we need the following results whose arguments are
similar to the ones in [17, Remark 2.1].

Theorem 4.3. Let H be defined as in (8). Suppose that Assumption 4.1 holds and that the sequence {zk} is generated by Algorithm 4.1.
Then, the following results are hold.

(a) The sequences {‖H(zk)‖} and {τk} are monotonically non-increasing.
(b) βμk ≥ τ 2

k for all k.
(c) The sequence {μk} is monotonically non-increasing and μk > 0 for all k.
(d) The sequence {zk} is bounded.

Proof. (a) From definition of the line search in (12) and τk := min{1, ‖H(zk)‖}, it is clear that {‖H(zk)‖} and {τk} are
monotonically non-increasing.

(b) We prove this conclusion by induction. First, by Algorithm 4.1, it is clear that τ 2
0 ≤ βμ0 with τ0, β and μ0 chosen in

Algorithm 4.1. Secondly, we suppose that τ 2
k ≤ βμk for some k. Then, for k + 1, we have

μk+1 − τ 2
k+1

β
= μk + αk�μk − τ 2

k+1

β

= (1 − αk)μk + αk
τ 2

k

β
− τ 2

k+1

β

≥ (1 − αk)
τ 2

k

β
+ αk

τ 2
k

β
− τ 2

k+1

β

≥ 0,

where the second equality holds due to the Newton equation (11), and the second inequality holds due to part (a). Hence,
it follows that βμk ≥ τ 2

k for all k.

(c) From the iterative scheme zk+1 = zk + αk
zk , we know μk+1 = μk + αk�μk . By the Newton equations (11) and the line
search as in (12) again, it follows that

μk+1 = (1 − αk)μk + αk
τ 2

k

β
≥ (1 − αk)

τ 2
k

β
+ αk

τ 2
k

β
> 0

for all k. On the other hand, we have

μk+1 = (1 − αk)μk + αk
τ 2

k

β
≤ (1 − αk)μk + αkμk ≤ μk,

where the first inequality holds due to part (b). Hence, the sequence {μk} is monotonically non-increasing and μk > 0 for
all k.

(d) From part (a), we know the sequence {‖H(zk)‖} is bounded. Thus, there is a constant C such that ‖H(zk)‖ ≤ C . In
addition, since

4
∥∥∥λ1(xk)u(1)

x + λ2(xk)u(2)
x

∥∥∥2 −
p
√

4

4

(
|λ1(xk)| + |λ2(xk)|

)2

= 1

4

[
(8 − 2

p
√

4)(|λ1(xk)|2 + |λ2(xk)|2) + p
√

4(|λ1(xk)| − |λ2(xk)|)2
]

> 0 (∀p > 1),

it follows that

90 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
‖H(zk)‖
≥
∥∥∥Axk + B�p(μk, xk) − b

∥∥∥
≥
∥∥∥Axk

∥∥∥−
∥∥∥B�p(μk, xk)

∥∥∥− ‖b‖

=
√

(xk)T AT Axk −
√

[�p(μk, xk)]T BT B�p(μk, xk) − ‖b‖
≥
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)‖�p(μk, xk)‖2 − ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)

∥∥∥φp(μk, λ1(xk))u(1)
x + φp(μk, λ2(xk))u(2)

x

∥∥∥2 − ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)
[
φ2

p(μk, λ1(xk))‖u(1)
x ‖2 + φ2

p(μk, λ2(xk))‖u(2)
x ‖2

]
− ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)

[
1

2

(
p
√

(μ
p
k + |λ1(xk)|p)2 + p

√
(μ

p
k + |λ2(xk)|p)2

)]
− ‖b‖

≥
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)

·
√[

1

2

(
(μ2

k + |λ1(xk)|2 + p
√

2μk|λ1(xk)|) + (μ2
k + |λ2(xk)|2 + p

√
2μk|λ2(xk)|)

)]
− ‖b‖

=
√

λmin(AT A)‖xk‖

−
√

λmax(BT B)

√
μ2

k + 1

2
|λ1(xk)|2 + 1

2
|λ2(xk)|2 +

p
√

2

2
μk(|λ1(xk)| + |λ2(xk)|) − ‖b‖

≥
√

λmin(AT A)‖xk‖
−
√

λmax(BT B)

√
μ2

k + 1

2
|λ1(xk)|2 + 1

2
|λ2(xk)|2 + 2μk‖λ1(xk)u(1)

x + λ2(xk)u(2)
x ‖ − ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)
[
μk + ‖λ1(xk)u(1)

x + λ2(xk)u(2)
x ‖
]
− ‖b‖

=
(√

λmin(AT A) −
√

λmax(BT B)
)

‖xk‖ −
√

λmax(BT B)μk − ‖b‖.
This together with ‖H(zk)‖ ≤ C implies

‖xk‖ ≤ C +√λmax(BT B)μk + ‖b‖√
λmin(AT A) −√λmax(BT B)

holds for all k. Thus, the sequence {xk} is bounded. �
Theorem 4.4. Suppose that Assumption 4.1 holds and that {zk} is generated by Algorithm 4.1. Then, any accumulation point of {zk} is
a solution to the SOCAVE (2).

Proof. From Theorem 4.3 (d), we know the sequence {zk} is bounded. Hence, there exists at least a accumulation point
for the sequence {zk}. Without loss of generality, let limk→∞ zk := z� = (μ�, x�). Then, it follows that H� := H(z�) =
limk→∞ H(zk) and τ� := min{1, ‖H�‖} = limk→∞ min{1, ‖H(zk)‖}. Now, we will show H� = 0. Suppose not, i.e., ‖H�‖ > 0.
To proceed, we discuss two cases according to whether limk→∞ αk = 0 or αk ≥ α̂ > 0 with α̂ ∈ R++ .

Case 1: limk→∞ αk = 0. Then, from the line search (12), for the number αk := αk
δ

with all sufficiently large k, we have

‖H(zk + αk�zk)‖ > [1 − σ(1 − 1

β
)αk]‖H(zk)‖.

Furthermore, this leads to

‖H(zk + αk�zk)‖ − ‖H(zk)‖
αk

> −σ(1 − 1

β
)‖H(zk)‖. (15)

Besides, from Theorem 4.3 (c) again, we know μ� ≥ 0. It follows that the function H is continuously differentiable at the
point z� . Taking k → ∞ in the formula (15), we have

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 91
〈H(z�), H ′(z�)�z�〉
‖H(z�)‖ ≥ −σ(1 − 1

β
)‖H(z�)‖. (16)

This combining the Newton equations (11) yields

〈H(z�), H ′(z�)�z�〉
‖H(z�)‖ = (τ�)

2

β‖H(z�)‖〈H(z�), e〉 − ‖H(z�)‖

≤ (τ�)
2‖H(z�)‖

β‖H(z�)‖ − ‖H(z�)‖

≤ τ�

β
− ‖H(z�)‖

≤ (
1

β
− 1)‖H(z�)‖, (17)

where the first inequality holds due to the Hölder inequality 〈H(z�), e〉 ≤ ‖H(z�)‖‖e‖ = ‖H(z�)‖, the second and third
inequality hold due to τ� = min{1, ‖H(z�)‖}. Putting (16) and (17) together gives 1

β
− 1 ≥ −σ(1 − 1

β
). This contradicts

σ ∈ (0, 1) and β > 1.

Case 2: αk ≥ α̂ > 0 for all k. From the line search (12), we have

‖H(zk+1)‖ ≤
[

1 − σ(1 − 1

β
)α̂

]
‖H(zk)‖ = ‖H(zk)‖ − σ(1 − 1

β
)α̂‖H(zk)‖.

Then, it follows from the boundedness of ‖H(zk)‖ that
∑∞

k=0 α̂σ (1 − 1
β
)‖H(zk)‖ is bounded. Moreover, we have

limk→∞ ‖H(zk)‖ = 0, i.e., ‖H�‖ = 0. This contradicts ‖H�‖ > 0.

Hence, from all the above, we show H(z�) = 0. That is, the element x� is a solution of the SOCAVE (2). Then, the proof
is complete. �

Now, we show the local quadratic convergence of Algorithm 4.1. In fact, we can achieve the following result by similar
arguments as those in [37, Theorem 8]. For completeness, we also provide a detailed proof.

Theorem 4.5. Let H be defined as in (8) and z� be the unique solution to SOCAVE (2). Suppose that Assumption 4.1 holds and that all
V ∈ ∂ H(z�) are nonsingular. Then, the whole sequence {zk} converges to z� , and ‖zk+1 − z�‖ = O (‖zk − z�‖2).

Proof. Since z� is the solution to SOCAVE (2), using Assumption 4.1 and applying Theorem 4.1 yield that the Jacobian matrix
H ′(zk) is nonsingular for all zk sufficiently close to z� . On the other hand, applying the condition that all V ∈ ∂ H(z�) are
nonsingular and from [36, Proposition 3.1], we have ‖H ′(zk)−1‖ = O (1) for all zk sufficiently close to z� . Because z� is the
solution to SOCAVE (2), it is clear that z� is a solution of H(z) = 0. In addition, the function H is strongly semismooth, it
follows that

‖H(zk) − H(z�) − H ′(zk)(zk − z�))‖ = O (‖zk − z�‖2).

Thus, we have

∥∥∥zk + �zk − z�
∥∥∥=

∥∥∥∥zk + H ′(zk)−1
[
−H(zk) + 1

β
τ 2

k e

]
− z�

∥∥∥∥
≤
∥∥∥H ′(zk)−1

(
−H(zk) + H ′(zk)(zk − z�)

)∥∥∥+
∥∥∥∥H ′(zk)−1 1

β
τ 2

k e

∥∥∥∥
≤
∥∥∥H ′(zk)−1

(
−H(zk) + H ′(zk)(zk − z�)

)∥∥∥+ O (1)

∥∥∥∥ 1

β
τ 2

k e

∥∥∥∥
= O (‖H(zk) − H(z�) − H ′(zk)(zk − z�)‖) + O (‖H(zk)‖2)

= O (‖zk − z�‖2) + O (‖zk − z�‖2)

= O (‖zk − z�‖2)

where the first equality holds due to the Newton equation (11), and the third equality holds since the function H is locally
Lipschitz continuous near zk . Then, the proof is complete. �

92 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
5. Numerical results

This section is devoted to the numerical results. First, we show the numerical comparison between the smoothing New-
ton algorithm and generalized Newton method. This provides the numerical evidence about why we adopt the smoothing
Newton algorithm, not the generalized Newton algorithm, in this paper. Secondly, we use the performance profile to depict
the comparison among different values of p. This shows that the smoothing Newton algorithm is not regularly affected
when p is perturbed. Moreover, a suitable smoothing function from the class of smoothing functions is suggested in view
of the numerical comparisons.

5.1. Smoothing Newton algorithm vs generalized Newton method

In this subsection, for fixed p = 2, we provide some numerical examples to evaluate the efficiency of Algorithm 4.1. In
our tests, we choose parameters

μ0 = 0.1, x0 = rand(n,1), δ = 0.5, σ = 10−5 and β = max(1,1.01 ∗ τ 2
0 /μ).

We stop the iterations when ‖H(zk)‖ ≤ 10−6 or the number of iterations exceeds 100. All the experiments are done on a
PC with Intel(R) CPU of 2.40 GHz and RAM of 4.00 GHz, and all the program codes are written in Matlab and run in Matlab
environment. We consider the following four problems, and compute these problems by using Smoothing Newton Algo-
rithm (SN for short) 4.1 and Generalized Newton method (GN for short) which introduced in [16], respectively. Illustrative
examples further demonstrate the superiority of our proposed algorithm.

Problem 5.1. Consider the SOCAVE (2) which is generated in the following way: first choose two random matrices B, C ∈
R

n×n from a uniformly distribution on [−10, 10] for every element. We compute the maximal singular value σ1 of B and
the minimal singular value σ2 of C , and let σ := min{1, σ2/σ1}. Next, we divide C by σ multiplied by a random number
in the interval [0, 1], and the resulting matrix is denoted as A. Accordingly, the minimum singular values of A exceeds
the maximal singular value of B . We choose randomly b ∈ R

n on [0, 1] for every element. By Algorithm 4.1 in this paper,
the resulting SOCAVE (2) is solvable. The initial point is chosen in the range [0, 1] entry-wisely. Note that a similar way to
construct the problem was given in [16].

Problem 5.2. Consider the SOCAVE (2) which is generated in the following way: choose two random matrices C, D ∈ R
n×n

from a uniformly distribution on [−10, 10] for every element, and compute their singular value decompositions C :=
U1 S1 V T

1 and D := U2 S2 V T
2 with diagonal matrices S1 and S2; unitary matrices U1, V 1, U2 and V 2. Then, we choose

randomly b, c ∈ R
n on [0, 10] for every element. Next, we take a ∈ R

n by setting ai = ci + 10 for all i ∈ {1, . . . , n}, so that
a ≥ b. Set A := U1Diag(a)V T

1 and B := U2Diag(b)V T
2 , where Diag(x) denotes a diagonal matrix with its i-th diagonal element

being xi . The gap between the minimal singular value of A and the maximal singular value of B is limited and can be very
small. We choose randomly b ∈ R

n in [0, 10]. The initial point is chosen in the range [0, 1] entry-wisely.

Problem 5.3. Consider the SOCAVE (2) which is generated in the following way: choose two random matrices A, B ∈ R
n×n

from a uniformly distribution on [−10, 10] for every element. In order to ensure that the SOCAVE (2) is solvable, we update
the matrix A by the following: let [U S V] = svd(A). If min{S(i, i)} = 0 for i = 0, 1, · · · , n, we make A = U (S + 0.01E)V , and
then A = λmax(BT B)+0.01

λmin(AT A)
A. We choose randomly b ∈ R

n on [0, 10] for every element. The initial point is chosen in the range
[0, 1] entry-wisely.

Problem 5.4. We consider the SOCAVE (2) which is generated the same as Problem 5.1. But, here the SOC is given by
K :=Kn1 × · · · ×Knr , where n1 = · · · = nr = n

r .

The above Problems 5.1–5.4 are both generated randomly. Below, as suggested by the reviewer, we consider a real
application problem. It is well known that the second-order cone linear complementarity problem (SOCLCP) has various
applications in engineering, control, finance, robust optimization and combinatorial optimization since the KKT system of a
second-order cone programming can be recast an SOCLCP. In general, the SOCLCP is to find x, y ∈ Rn such that

Mx + P y = c, x ∈ K, y ∈ K, xT y = 0, (18)

where M, P ∈ Rn×m are given matrices and c ∈ Rn is given vector. From [16, Theorem 1.1], we know that the SOCLCP (18) is
equivalent to the SOCAVE (2). In view of this, the next experiment is on this case.

Problem 5.5. Consider the SOCLCP with P = −I , which is generated in the following way: First, we generate a matrix B
and a vector b as those given in Problem 5.1. Then, let d be a random number in [0, 1]. We set M := B BT + (1 + d)I and
c := 0.5(M(b +|b|) +|b| −b) to ensure the solvability of the SOCLCP. We test the above SOCLCP by casting it into an SOCAVE
according to [16, Theorem 1.1], i.e., we implement the corresponding SOCAVE with A = M + I , B = M − I and b = 2c.
Moreover, the initial point is chosen in the range [0, 1] entry-wisely.

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 93
Table 1
Numerical results for Problem 5.1.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 8.618e−08 2.8 0.078 3 2 0 9.992e−08 2.8 0.349 3 2 0
200 4.901e−08 2.6 0.051 3 2 0 6.904e−10 2.9 0.134 3 2 0
300 1.574e−08 2.7 0.122 3 2 0 3.779e−09 2.9 0.231 3 2 0
400 3.041e−09 2.7 0.232 3 2 0 9.155e−08 2.7 0.326 3 2 0
500 1.778e−07 2.2 0.300 3 2 0 1.445e−07 2.6 0.421 3 2 0
600 1.385e−07 2.5 0.498 3 2 0 5.626e−08 2.8 0.844 3 2 0
700 2.578e−07 2.4 0.668 3 2 0 1.527e−08 2.6 1.334 3 2 0
800 2.356e−07 2.1 0.771 3 2 0 6.846e−08 2.6 1.905 3 2 0
900 2.420e−08 2.5 1.031 3 2 0 1.272e−09 2.7 2.685 3 2 0
1000 4.718e−08 2.5 1.193 3 2 0 1.135e−07 2.7 3.691 3 2 0
1500 2.027e−07 2.3 1.919 3 2 0 6.417e−08 2.6 13.369 3 2 0
2000 3.121e−08 2.2 3.892 3 2 0 1.015e−07 2.5 32.982 3 2 0
2500 1.565e−07 2.1 6.625 3 2 0 3.940e−08 2.5 53.510 3 2 0
3000 1.028e−07 2.3 12.340 3 2 0 1.293e−07 2.5 87.910 3 2 0

Table 2
Numerical results for Problem 5.2.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 2.884e−07 4.2 0.050 5 4 0 1.920e−07 4.4 0.134 5 4 0
200 4.556e−07 4.3 0.067 5 4 0 2.637e−07 4.6 0.346 5 4 0
300 2.805e−07 4.5 0.172 5 4 0 3.522e−07 4.4 0.615 5 4 0
400 2.453e−07 4.6 0.312 5 4 0 2.617e−07 4.6 0.863 5 4 0
500 1.809e−13 5.0 0.516 5 5 0 1.037e−07 4.8 1.440 5 4 0
600 1.870e−07 4.8 0.680 5 4 0 3.414e−12 5.0 2.346 5 5 0
700 2.550e−13 5.0 0.880 5 5 0 6.571e−08 4.9 3.535 5 4 0
800 2.868e−13 5.0 1.083 5 5 0 1.606e−07 4.8 5.317 5 4 0
900 7.559e−08 4.9 1.201 5 4 0 2.485e−07 4.7 7.596 5 4 0
1000 3.595e−13 5.0 1.572 5 5 0 1.662e−07 4.8 10.552 5 4 0
1500 5.412e−13 5.0 4.196 5 5 0 1.782e−11 5.0 34.400 5 5 0
2000 7.230e−13 5.0 8.962 5 5 0 2.851e−11 5.0 79.108 5 5 0
2500 8.893e−13 5.0 17.207 5 5 0 4.451e−11 5.0 146.769 5 5 0
3000 1.054e−12 5.0 29.175 5 5 0 6.119e−11 5.0 247.029 5 5 0

Table 3
Numerical results for Problem 5.3.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 7.928e−10 3.0 0.048 3 3 0 2.085e−08 3.0 0.075 3 3 0
200 9.461e−10 3.0 0.062 3 3 0 4.297e−09 3.0 0.108 3 3 0
300 2.388e−10 3.0 0.122 3 3 0 5.843e−08 2.9 0.237 3 2 0
400 5.780e−11 3.0 0.236 3 3 0 3.841e−08 2.8 0.379 3 2 0
500 1.133e−08 2.9 0.360 3 2 0 1.183e−09 2.9 0.501 3 2 0
600 2.655e−08 2.9 0.566 3 2 0 1.225e−10 3.0 0.627 3 3 0
700 2.202e−11 3.0 0.807 3 3 0 2.525e−10 3.0 0.978 3 3 0
800 8.893e−08 2.8 0.975 3 2 0 2.563e−10 3.0 1.576 3 3 0
900 1.818e−08 2.9 1.240 3 2 0 2.505e−10 3.0 2.374 3 3 0
1000 6.951e−10 3.0 1.502 3 3 0 3.247e−10 3.0 3.367 3 3 0
1500 4.225e−08 2.9 2.482 3 2 0 4.245e−10 3.0 11.625 3 3 0
2000 6.979e−08 2.6 4.683 3 2 0 1.705e−09 3.0 27.704 3 3 0
2500 9.459e−10 2.9 9.441 3 2 0 1.376e−09 3.0 53.306 3 3 0
3000 5.624e−08 2.9 15.765 3 2 0 1.943e−08 2.8 91.226 3 2 0

In our experiments, every set of the simulations for every problem is randomly generated ten times, and the numerical
results are listed in Tables 1–5, respectively. In Tables 1–5, n denotes the size of testing problem; ares denotes the average
value of ‖H(zk)‖ when the test stops; itn denotes the average value of the iteration numbers; time denotes the average value
of the CPU time in seconds; maxit and minit denote the maximal value and the minimal value of the iteration numbers,
respectively; and f ails denotes that the times of test is failed. From the numerical results that are presented in Tables 1–5,
it is easy to see that the proposed smoothing Newton method is effective for solving all the simulated SOCAVE problems.
For the SOCLCP, although the smoothing Newton method performs slightly less than the generalized Newton method, the
difference is marginal. To sum up, both approaches are competitive and can be employed to solve SOCAVE.

94 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
Table 4
Numerical results for Problem 5.4.

SN GN

n r Ares Itn Time Maxit Minit Fails Ares Itn Time Maxit Minit Fails

2 9.933e−08 2.4 1.318 3 2 0 2.995e−10 2.9 3.627 3 2 0
4 1.174e−07 2.5 1.245 3 2 0 1.594e−08 2.6 3.106 3 2 0

1000 5 1.056e−07 2.4 1.293 3 2 0 9.657e−08 2.7 3.115 3 2 0
10 3.380e−13 5.0 1.791 5 5 0 3.971e−08 2.5 3.218 3 2 0
20 3.360e−13 5.0 2.103 5 5 0 5.291e−08 2.7 3.181 3 2 0

2 1.971e−08 2.6 5.084 3 2 0 2.494e−08 2.6 28.888 3 2 0
4 1.047e−07 2.3 4.270 3 2 0 5.363e−08 2.6 29.002 3 2 0

2000 5 1.257e−07 2.5 4.813 3 2 0 1.360e−08 2.8 29.055 3 2 0
10 6.689e−13 5.0 10.463 5 5 0 1.360e−08 2.8 29.055 3 3 0
20 6.653e−13 5.0 11.255 5 5 0 1.360e−08 2.8 29.055 3 4 0

2 1.560e−07 2.1 12.312 3 2 0 2.496e−07 2.5 90.699 3 2 0
4 1.162e−07 2.5 14.457 3 2 0 1.609e−07 2.3 89.813 3 2 0

3000 5 3.156e−07 2.2 12.995 3 2 0 6.872e−0 2.4 88.921 3 2 0
10 9.922e−13 5.0 32.011 5 5 0 1.688e−07 2.4 90.041 3 2 0
20 1.016e−12 5.0 33.877 5 5 0 1.411e−08 2.5 88.949 3 2 0

Table 5
Numerical results for Problem 5.5.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 1.159e−10 3.0 0.011 3 3 0 6.353e−11 2.2 0.019 3 2 0
200 3.093e−10 3.0 0.017 3 3 0 2.691e−10 2.0 0.009 2 2 0
300 5.937e−10 3.0 0.039 3 3 0 4.905e−10 2.1 0.025 3 2 0
400 1.162e−09 3.0 0.100 3 3 0 1.205e−09 2.1 0.064 3 2 0
500 1.755e−09 3.0 0.129 3 3 0 1.538e−09 2.1 0.112 3 2 0
600 2.439e−09 3.0 0.223 3 3 0 2.239e−09 2.0 0.154 2 2 0
700 3.897e−09 3.0 0.298 3 3 0 3.522e−09 2.0 0.229 2 2 0
800 4.918e−09 3.0 0.399 3 3 0 3.407e−09 2.0 0.289 2 2 0
900 5.487e−09 3.0 0.566 3 3 0 5.359e−09 2.0 0.643 2 2 0
1000 7.328e−09 3.0 0.971 3 3 0 5.994e−09 2.0 0.530 2 2 0
1500 1.687e−08 3.0 2.140 3 3 0 1.354e−08 2.0 1.635 2 2 0
2000 3.121e−08 3.0 4.733 3 3 0 2.519e−08 2.0 3.597 2 2 0
2500 4.956e−08 3.0 8.784 3 3 0 4.010e−08 2.0 6.387 2 2 0
3000 6.581e−08 3.0 14.508 3 3 0 6.062e−08 2.0 10.855 2 2 0

5.2. Numerical comparisons with different values of p

In this subsection, we observe the numerical comparison of Algorithm 4.1 with different values of p. In particular,
we consider the performance profile which is introduced in [44] as a means. In other words, we regard Algorithm 4.1
corresponding to different p = 1.1, 2, 3, 10, 20, 80 as a solver, and assume that there are ns solvers and nq test problems
from the test set P which is generated randomly. We are interested in using the computing time as performance measure
for Algorithm 4.1 with different p. For each problem q and solver s, let

fq,s = computing time required to solve problem q by solver s.

We employ the performance ratio

rq,s := fq,s

min{ fq,s : s ∈ S} ,

where S is the six solvers set. We assume that a parameter rq,s ≤ rM for all q, s are chosen, and rq,s = rM if and only if
solver s does not solve problem q. In order to obtain an overall assessment for each solver, we define

ρs(τ) := 1

nq
size{q ∈ P : rq,s ≤ τ },

which is called the performance profile of the computing time for solver s. Then, ρs(τ) is the probability for solver s ∈ S
that a performance ratio fq,s is within a factor τ ∈R of the best possible ratio.

Fig. 1 depicts the performance profile of computation time in Algorithm 4.1 in the range of τ ∈ [1, 1.8] for six solvers
on 200 test problem which are generated randomly from Problem 5.1 to Problem 5.4. The six solvers correspond to Al-
gorithm 4.1 with p = 1.1, 2, 3, 10, 20, 80, respectively. From this figure, we see that the algorithm is not regularly affected

X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96 95
Fig. 1. Performance profile of computation time of Algorithm 4.1 with different p.

when p is perturbed. Moreover, we observe that the large value of p and the small value of p which is close to 1 seem not
the good choices of being employed to work with the proposed algorithm. When taking p = 2 along with Algorithm 4.1, it
has best numerical performance. This suggests that φ2 is the best choice of function to be applied in the smoothing Newton
method.

6. Concluding remarks

In this paper, we have studied the absolute value equation associated with SOC, which is a natural extension of the
standard absolute value equation. Based on a class of smoothing functions, the smoothing Newton algorithm is proposed
to solve SOCAVE iteratively. The algorithm is shown to be well-defined, quadratically convergent under suitable conditions.
Some preliminary numerical results are reported which explain the efficiency of the proposed method. Although, the main
idea for proving the convergence is similar to the one used in the literature, the analysis is indeed more subtle and involves
more techniques due to the feature of SOC. Moreover, two kinds of numerical comparisons are presented in this paper.
The first one is the numerical comparison between the smoothing Newton algorithm and generalized Newton method. This
provides numerical evidence of indicating that the smoothing Newton algorithm and the generalized Newton algorithm are
competitive for solving SOCAVE. Another comparison is based on various values of p, from which we see that the large
value of p and the small value of p which is close to 1 are not suitable to work with the proposed algorithm. In particular,
when taking p = 2 along with Algorithm 4.1, the numerical performance is the best. This suggests that φ2 is the best choice
from the class of smoothing functions to be applied in the smoothing Newton method for solving SOCAVE.

References

[1] L. Caccetta, B. Qu, G.-L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl. 48 (2011) 45–58.
[2] J.-S. Chen, X. Chen, P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones, Math. Program. 101 (1) (2004) 95–117.
[3] J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of second-order cone complementarity problem, Math. Program. 104 (2005)

293–327.
[4] J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization 55 (4) (2006) 363–385.
[5] J.-S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, J. Glob. Optim.

36 (2006) 565–580.
[6] J.-S. Chen, On some NCP-functions based on the generalized Fischer–Burmeister function, Asia-Pac. J. Oper. Res. 24 (2007) 401–420.
[7] J.-S. Chen, S.-H. Pan, A family of NCP-functions and a descent method for the nonlinear complementarity problem, Comput. Optim. Appl. 40 (2008)

389–404.
[8] J.-S. Chen, S.-H. Pan, T.-C. Lin, A smoothing Newton method based on the generalized Fischer–Burmeister function for MCPs, Nonlinear Anal. 72 (2010)

3739–3758.
[9] J.-S. Chen, Z.-H. Huang, C.-Y. She, A new class of penalized NCP-functions and its properties, Comput. Optim. Appl. 50 (2011) 49–73.

[10] J.-S. Chen, S.-H. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs, Pac. J. Optim. 8 (1) (2012) 33–74.
[11] U. Faraut, A. Koranyi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, New York, 1994.
[12] M. Fukushima, Z.-Q. Luo, P. Tseng, Smoothing functions for second-order-cone complementarity problems, SIAM J. Optim. 12 (2002) 436–460.
[13] F. Facchinei, J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
[14] S.-L. Hu, Z.-H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010) 417–424.
[15] S.-L. Hu, Z.-H. Huang, J.-S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, J.

Comput. Appl. Math. 230 (2009) 69–82.
[16] S.-L. Hu, Z.-H. Huang, Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math.

235 (2011) 1490–1501.
[17] Z.-H. Huang, Y. Zhang, W. Wu, A smoothing-type algorithm for solving system of inequalities, J. Comput. Appl. Math. 220 (2008) 355–363.
[18] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[19] Z.-H. Huang, T. Ni, Smoothing algorithms for complementarity problems over symmetric cones, Comput. Optim. Appl. 45 (2010) 557–579.

http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43515A3131s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4343543034s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43543035s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43543035s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4368656E30362D4F5054s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4368656E3036s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4368656E3036s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4368656E3037s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43503038s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43503038s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43504C3130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43504C3130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4348533131s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib43503132s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib464B3934s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib464C543032s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib46503033s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib48483130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4848433039s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4848433039s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib48485A3131s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib48485A3131s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib485A573038s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib484A3835s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib484E3130s1

96 X.-H. Miao et al. / Applied Numerical Mathematics 120 (2017) 82–96
[20] Z.-H. Huang, L. Qi, D.-F. Sun, Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and monotone LCP, Math. Program. 99 (2010)
423–441.

[21] X.-Q. Jiang, A smoothing Newton method for solving absolute value equations, Adv. Mater. Res. 765–767 (2013) 703–708.
[22] X.-Q. Jiang, Y. Zhang, A smoothing-type algorithm for absolute value equations, J. Ind. Manag. Optim. 9 (2013) 789–798.
[23] S. Ketabchi, H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, J. Optim. Theory Appl. 154 (2012) 1080–1087.
[24] L. Kong, J. Sun, N. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems, SIAM J. Optim. 19 (2008) 1028–1047.
[25] O.L. Mangasarian, Absolute value programming, Comput. Optim. Appl. 36 (2007) 43–53.
[26] O.L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett. 1 (2007) 3–5.
[27] O.L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009) 101–108.
[28] O.L. Mangasarian, Knapsack feasibility as an absolute value equation solvable by successive linear programming, Optim. Lett. 3 (2009) 161–170.
[29] O.L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optim. Lett. 6 (2012) 1527–1533.
[30] O.L. Mangasarian, Absolute value equation solution via dual complementarity, Optim. Lett. 7 (2013) 625–630.
[31] O.L. Mangasarian, Linear complementarity as absolute value equation solution, Optim. Lett. 8 (2014) 1529–1534.
[32] O.L. Mangasarian, Absolute value equation solution via linear programming, J. Optim. Theory Appl. 161 (2014) 870–876.
[33] X.-H. Miao, J.-S. Chen, The solvability and unique solvability of the absolute value equations associated with second-order cone, 2016, submitted for

publication.
[34] O.L. Mangasarian, R.R. Meyer, Absolute value equation, Linear Algebra Appl. 419 (2006) 359–367.
[35] O.A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009) 363–372.
[36] L. Qi, J. Sun, A nonsmooth version of Newton’s method, Math. Program. 58 (1993) 353–367.
[37] L. Qi, D. Sun, G.L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality

problems, Math. Program. 87 (2000) 1–35.
[38] J. Rohn, A theorem of the alternative for the equation Ax + B|x| = b, Linear Multilinear Algebra 52 (2004) 421–426.
[39] J. Rohn, Solvability of systems of interval linear equations and inequalities, in: M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann (Eds.), Linear

Optimization Problems with Inexact Data, Springer, 2006, pp. 35–77.
[40] J. Rohn, An algorithm for solving the absolute value equation, Electron. J. Linear Algebra 18 (2009) 589–599.
[41] S. Yamanaka, M. Fukushima, A branch and bound method for the absolute value programs, Optimization 63 (2014) 305–319.
[42] Y. Zhang, Z.-H. Huang, A nonmonotone smoothing-type algorithm for solving a system of equalities and inequalities, J. Comput. Appl. Math. 233 (2010)

2312–2321.
[43] C. Zhang, Q.-J. Wei, Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl. 143 (2009)

391–403.
[44] E.D. Dolan, J.J. More, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213.

http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4851533130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4851533130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4A69613133s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4A5A3133s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4B4D3132s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4B53583038s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E30372D31s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E30372D32s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E30392D31s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E30392D32s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E3132s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E3133s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E31342D31s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D616E31342D32s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib4D4D3036s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib50726F3039s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib51533933s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib51535A3030s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib51535A3030s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib526F683034s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib526F683036s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib526F683036s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib526F683039s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib59463134s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib5A483130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib5A483130s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib5A573039s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib5A573039s1
http://refhub.elsevier.com/S0168-9274(17)30108-3/bib444D3032s1

	A smoothing Newton method for absolute value equation associated with second-order cone
	1 Introduction
	2 Preliminaries
	3 Smoothing functions associate with SOCAVE
	4 Smoothing Newton method
	5 Numerical results
	5.1 Smoothing Newton algorithm vs generalized Newton method
	5.2 Numerical comparisons with different values of p

	6 Concluding remarks
	References

