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In this paper, we consider the smoothing Newton method for solving a type of absolute 
value equations associated with second order cone (SOCAVE for short), which is a 
generalization of the standard absolute value equation frequently discussed in the literature 
during the past decade. Based on a class of smoothing functions, we reformulate the 
SOCAVE as a family of parameterized smooth equations, and propose the smoothing 
Newton algorithm to solve the problem iteratively. Moreover, the algorithm is proved 
to be locally quadratically convergent under suitable conditions. Preliminary numerical 
results demonstrate that the algorithm is effective. In addition, two kinds of numerical 
comparisons are presented which provides numerical evidence about why the smoothing 
Newton method is employed and also suggests a suitable smoothing function for future 
numerical implementations. Finally, we point out that although the main idea for proving 
the convergence is similar to the one used in the literature, the analysis is indeed more 
subtle and involves more techniques due to the feature of second-order cone.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The standard absolute value equation (AVE) is in the form of

Ax + B|x| = b, (1)

where A ∈ R
n×n , B ∈ R

n×n , B �= 0, and b ∈ R
n . Here |x| means the componentwise absolute value of vector x ∈ R

n . When 
B = −I , where I is the identity matrix, the AVE (1) reduces to the special form:

Ax − |x| = b.

It is known that the AVE (1) was first introduced by Rohn in [38] and recently has been investigated by many researchers, 
for example, Caccetta, Qu and Zhou [1], Hu and Huang [14], Jiang and Zhang [22], Ketabchi and Moosaei [23], Mangasarian 
[25–32], Mangasarian and Meyer [34], Prokopyev [35], and Rohn [40].
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In particular, Mangasarian and Meyer [34] show that the AVE (1) is equivalent to the bilinear program, the generalized 
LCP (linear complementarity problem), and the standard LCP provided 1 is not an eigenvalue of A. With these equivalent 
reformulations, they also show that the AVE (1) is NP-hard in its general form and provide existence results. Prokopyev 
[35] further improves the above equivalence which indicates that the AVE (1) can be equivalently recast as LCP without any 
assumption on A and B , and also provides a relationship with mixed integer programming. In general, if solvable, the AVE 
(1) can have either unique solution or multiple (e.g., exponentially many) solutions. Indeed, various sufficiency conditions 
on solvability and non-solvability of the AVE (1) with unique and multiple solutions are discussed in [34,35,39]. Some 
variants of the AVE, like the absolute value equation associated with second-order cone and the absolute value programs, 
are investigated in [16] and [41], respectively.

In this paper, we target another type of absolute value equation which is a natural extension of the standard AVE (1). 
More specifically the following absolute value equation associated with second-order cones, abbreviated as SOCAVE, as 
below:

Ax + B|x| = b, (2)

where A, B ∈ R
n×n and b ∈ R

n are the same as those in (1); |x| denotes the absolute value of x coming from the square 
root of the Jordan product “◦” of x and x. What is the difference between the standard AVE (1) and the SOCAVE (2)? 
Their mathematical formats look the same. In fact, the main difference is that |x| in the standard AVE (1) means the 
componentwise |xi | of each xi ∈ R, i.e., |x| = (|x1|, |x2|, · · · , |xn|)T ∈ R

n; however, |x| in the SOCAVE (2) denotes the vector 
satisfying 

√
x2 := √

x ◦ x associated with second-order cone under Jordan product. To understand its meaning, we need to 
introduce the definition of second-order cone (SOC). The second-order cone in Rn (n ≥ 1), also called the Lorentz cone, is 
defined as

Kn :=
{
(x1, x2) ∈R×R

n−1 | ‖x2‖ ≤ x1

}
,

where ‖ · ‖ denotes the Euclidean norm. If n = 1, then Kn is the set of nonnegative reals R+ . In general, a general second-
order cone K could be the Cartesian product of SOCs, i.e.,

K := Kn1 × · · · ×Knr .

For simplicity, we focus on the single SOC Kn because all the analysis can be carried over to the setting of Cartesian product. 
The SOC is a special case of symmetric cones and can be analyzed under Jordan product, see [11]. In particular, for any two 
vectors x = (x1, x2) ∈R ×R

n−1 and y = (y1, y2) ∈R ×R
n−1, the Jordan product of x and y associated with Kn is defined as

x ◦ y :=
[

xT y
y1x2 + x1 y2

]
.

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a main source of complication in the 
analysis of optimization problems involved SOC, see [3,10,12] and references therein for more details. The identity element 
under this Jordan product is e = (1, 0, ..., 0)T ∈ R

n . With these definitions, x2 means the Jordan product of x with itself, 
i.e., x2 := x ◦ x; and 

√
x with x ∈ Kn denotes the unique vector such that 

√
x ◦ √

x = x. In other words, the vector |x| in the 
SOCAVE (2) is computed by

|x| := √
x ◦ x.

As mentioned earlier, the significance of the AVE (1) arises from the fact that the AVE is capable to formulate many 
optimization problems (also see [26,30,32,34,35]), such as, linear programs, quadratic programs, bimatrix games, and so on. 
Moreover, the absolute value equations is equivalent to the linear complementarity problem [34]. Accordingly, we see that 
the SOCAVE (2) plays similar role in various optimization problems involved second-order cones. For solving the standard 
AVE (1), there are many various numerical methods proposed in the literature (see [1,21,22,25–27,35,43]). As for the SOCAVE 
(2), Hu, Huang and Zhang [16] propose a generalized Newton method for solving the SOCAVE (2). It is well known that 
smoothing-type algorithms is a powerful tool for solving many optimization problems, for example, the linear and nonlinear 
complementarity problems [3,12,19,20,24], the system of equalities and inequalities [17,42]. In this paper, we are interested 
in a smoothing Newton method for solving the SOCAVE (2). Our numerical results also support that the smoothing Newton 
method is a better way than the generalized Newton method employed in [16]. That is why we adopt this algorithm as the 
main tool to do numerical implementations. In addition, we have shown that the proposed smoothing Newton method is 
locally quadratically convergent under suitable condition. We report some preliminary numerical results to show that the 
method is efficient. Moreover, numerical comparisons based on various value of p are presented as well.

To close this section, we say a few words about notations and the organization of this paper. As usual, Rn denotes the 
space of n-dimensional real column vectors. R+ and R++ denote the nonnegative and positive reals. For any x, y ∈ R

n , 
the Euclidean inner product is denoted 〈x, y〉 = xT y, and the Euclidean norm ‖x‖ is denoted as ‖x‖ = √〈x, x〉. This paper 
is organized as follows. In Section 2, we briefly describe some concepts and properties on second-order cone. Besides, we 
review Jordan product and the spectral decomposition for elements x and y in Rn . In Section 3, we introduce a smoothing 
function of the absolute value |x|, and study the Jacobian matrix of the smoothing function. In Section 4, we propose 
a smoothing Newton algorithm for solving the SOCAVE (2), and discuss the convergence of the proposed method under 
suitable conditions. In Section 5, the preliminary numerical results and numerical comparisons are given.
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2. Preliminaries

In this section, we recall some basic concepts and background materials regarding the second-order cone, which will be 
extensively used in the subsequent analysis. More details can be found in [3,10–12,16]. First, we recall the expression of the 
spectral decomposition of x with respect to SOC. For x = (x1, x2) ∈ R ×R

n−1, the spectral decomposition of x with respect to 
SOC is given by

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (3)

where λi(x) = x1 + (−1)i‖x2‖ for i = 1, 2 and

u(i)
x =

⎧⎪⎨
⎪⎩

1
2

(
1, (−1)i xT

2‖x2‖
)T

if ‖x2‖ �= 0,

1
2

(
1, (−1)iωT

)T
if ‖x2‖ = 0,

(4)

with ω ∈ R
n−1 being any vector satisfying ‖ω‖ = 1. The two scalars λ1(x) and λ2(x) are called spectral values of x; while 

the two vectors u(1)
x and u(2)

x are called the spectral vectors of x. Moreover, it is obvious that the spectral decomposition of 
x ∈R

n is unique if x2 �= 0.

Lemma 2.1. For any x = (x1, x2) ∈R ×R
n−1 with the spectral decomposition given as in (3)-(4), the following results hold.

(a) u(1)
x ◦ u(2)

x = 0 and u(i)
x ◦ u(i)

x = u(i)
x for i = 1, 2;

(b) ‖u(1)
x ‖2 = ‖u(2)

x ‖2 = 1
2 and ‖x‖2 = 1

2 (λ2
1(x) + λ2

2(x)).

Proof. The property can be verified directly or can be found in [3,11,12,16,10]. �
In the next content, we talk about the projection onto second-order cone. We let x+ be the projection of x onto SOC Kn , 

and x− be the projection of −x onto the dual cone (Kn)∗ of Kn , where the dual cone (Kn)∗ is defined by (Kn)∗ := {y ∈
R

n | 〈x, y〉 ≥ 0, ∀x ∈ Kn}. In fact, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn . Due to the special structure of SOC Kn , the 
explicit formula of projection of x = (x1, x2) ∈R ×R

n−1 onto Kn is obtained in [3,10–13] as below:

x+ =
⎧⎨
⎩

x if x ∈ Kn,

0 if x ∈ −Kn,

u otherwise,

where

u =
[ x1+‖x2‖

2(
x1+‖x2‖

2

)
x2‖x2‖

]
.

Similarly, the expression of x− is in the form of

x− =
⎧⎨
⎩

0 if x ∈ Kn,

−x if x ∈ −Kn,

w otherwise,

where

w =
[ − x1−‖x2‖

2(
x1−‖x2‖

2

)
x2‖x2‖

]
.

Together with the spectral decomposition of x, it is shown that x = x+ + x− and the expression of x+ has the form:

x+ = (λ1(x))+u(1)
x + (λ2(x))+u(2)

x ,

and

x− = (−λ1(x))+u(1)
x + (−λ2(x))+u(2)

x ,

where (α)+ = max{0, α} for α ∈R.
Next, we talk about the expression of |x| associated with SOC. There is an alternative way via the so-called SOC-function 

to obtain the expression of |x|, which can be found in [2,4]. More specifically, for any x ∈ R
n , we define the absolute value

|x| of x with respect to SOC as |x| := x+ + x− . In fact, in the setting of SOC, the form |x| = x+ + x− is equivalent to the form 
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|x| = √
x ◦ x. Combining the above expression of x+ and x− , it cab be verified that the expression of the absolute value |x|

is in the form of

|x| = [(λ1(x))+ + (−λ1(x))+
]
u(1)

x + [(λ2(x))+ + (−λ2(x))+
]
u(2)

x

= ∣∣λ1(x)
∣∣u(1)

x + ∣∣λ2(x)
∣∣u(2)

x .

To end this section, we point out the relation between SOCAVE and SOCLCP (second-order cone linear complementarity 
problem). In [16], it was shown that SOCAVE (2) is equivalent to the following SOCLCP: find x, y ∈ R

n such that

Mx + P y = c, and x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0,

where M, P ∈R
n×n are matrices and c ∈ R

n . However, the above is not a standard SOCLCP because there exists the equations 
Mx + P y = c therein. As below, we show that the SOCAVE (2) can be further converted into a standard SOCLCP.

Theorem 2.1. The SOCAVE (2) can be reduced to the second-order cone linear complementarity problem (SOCLCP):

v ∈ Kn ×Kn ×Kn, w = Q v + q ∈ Kn ×Kn ×Kn and 〈v, w〉 = 0, (5)

where

Q :=
⎡
⎣ −I 2I 0

A B − A 0
−A A − B 0

⎤
⎦ , v :=

⎡
⎣ 2x+

|x|
0

⎤
⎦ and q :=

⎡
⎣ 0

−b
b

⎤
⎦ . (6)

Proof. By looking into (6), we have

w = Q v + q =
⎡
⎣ 2x−

Ax + B|x| − b
−Ax − B|x| + b

⎤
⎦ .

Plugging this into SOCLCP (5) implies that

Ax + B|x| − b ∈ Kn and − Ax − B|x| + b ∈ Kn.

Since Kn is pointed, it follows that Ax + B|x| − b = 0. On the other hand, the above argument is reversible. Thus, we show 
that SOCAVE (2) is equivalent to second-order cone linear complementarity problem. �
Remark 2.1. From Theorem 2.1, it follows that we can also solve the SOCAVE (2) by employing many efficient algorithms 
for solving SOCLCP (5). Nonetheless, when we apply the Newton method to solve SOCLCP, it still needs reformulate it as 
smooth equations or nonsmooth equations. This means that we need twice reformulations if we follow this way. In view of 
this, in this paper, we reformulate the SOCAVE (2) directly as the smooth equations, and solve the equations by smoothing 
Newton method.

3. Smoothing functions associate with SOCAVE

In this paper, we employ the smoothing Newton method for solving the SOCAVE (2). To this end, we need to adopt a 
smoothing function. Due to the non-differentiability of |α| for α ∈ R, we consider a class of smoothing functions for the 
absolute value function |α|. More specifically, we define the function φp(·, ·) :R2 → R as

φp(a,b) := p
√|a|p + |b|p, p > 1. (7)

This class of functions is extracted from the so-called generalized Fischer–Burmeister function φp(a, b) = p
√|a|p + |b|p −

(a + b), which is heavily studied in many references [5–9,15]. For convenience, we still use the notation φp even it is no 
longer exactly the same as the generalized Fischer–Burmeister function.

Lemma 3.1. Let φp :R2 → R be defined as in (7). Then, the following hold.

(a) φp(a, 0) = |a| and φp(0, b) = |b|;
(b) φp(·, ·) is Lipschitz continuous on R2;
(c) φp(·, ·) is strongly semismooth on R2;
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(d) φp(a, b) is continuously differentiable for any (a, b) �= (0, 0) ∈ R
2 with

∂φp(a,b)

∂a
= sgn(a)|a|p−1

(φp(a,b))p−1
and

∂φp(a,b)

∂b
= sgn(b)|b|p−1

(φp(a,b))p−1
,

where the function sgn(·) is defined by sgn(α) :=
⎧⎨
⎩

1 if α > 0,

0 if α = 0,

−1 if α < 0.

Proof. Please refer to [5–9,15] for a proof. �
According to Lemma 3.1, it follows that for any a ∈ R and a → 0, we have φp(a, b) → |b|. Therefore, combining the 

spectral decomposition of x and the function φp , we define a vector-valued smoothing function �p :R ×R
n → R

n as

�p(μ, x) = φp(μ,λ1(x))u(1)
x + φp(μ,λ2(x))u(2)

x

= p
√|μ|p + |λ1(x)|p u(1)

x + p
√|μ|p + |λ2(x)|p u(2)

x ,

where μ ∈R is a parameter, and λ1(x), λ2(x) are the spectral values of x. From Lemma 3.1, it is easy to verify that

lim
μ→0

�p(μ, x) = |λ1(x)| u(1)
x + |λ2(x)| u(2)

x = |x|.
In other words, the function �p(μ, x) is a uniformly smoothing function of |x| associated with SOC. With this function, for 
the SOCAVE (2), we further define a function H(μ, x) : R ×R

n → R ×R
n by

H(μ, x) =
[

μ
Ax + B�p(μ, x) − b

]
, ∀μ ∈R, x ∈R

n. (8)

Then, we observe that

H(μ, x) = 0 ⇐⇒ μ = 0 and Ax + B�p(μ, x) − b = 0

⇐⇒ Ax + B|x| − b = 0 and μ = 0.

This indicates that x is a solution to the SOCAVE (2) if and only if (μ, x) is a solution to the equation H(μ, x) = 0. In fact, 
we often choose μ ∈ R++ . Applying Lemma 3.1 again, it is not difficult to show that the function H(μ, x) is continuously 
differentiable on R++ ×R

n . From direct calculation, we can also obtain the explicit formula of the Jacobian matrix for the 
function H as below:

H ′(μ, x) =
[

1 0

B
∂�p(μ,x)

∂μ A + B
∂�p(μ,x)

∂x

]
(9)

for all (μ, x) ∈R++ ×R
n with x = (x1, x2) ∈R ×R

n−1, where

∂�p(μ, x)

∂μ
= ∂φp(μ,λ1(x))

∂μ
u(1)

x + ∂φp(μ,λ2(x))

∂μ
u(2)

x

= μp−1

[φp(μ,λ1(x))]p−1
u(1)

x + μp−1

[φp(μ,λ2(x))]p−1
u(2)

x

and

∂�p(μ, x)

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sgn(x1)|x1|p−1[ p√μp+|x1|p
]p−1 I if x2 = 0,⎡

⎣ b c
xT

2‖x2‖
c x2‖x2‖ aI + (b − a)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a = φp(μ,λ2(x)) − φp(μ,λ1(x))

λ2(x) − λ1(x)
,

b = 1

2

(
sgn(λ2(x))|λ2(x)|p−1

[φp(μ,λ2(x))]p−1
+ sgn(λ1(x))|λ1(x)|p−1

[φp(μ,λ1(x))]p−1

)
, (10)

c = 1

2

(
sgn(λ2(x))|λ2(x)|p−1

[φp(μ,λ2(x))]p−1
− sgn(λ1(x))|λ1(x)|p−1

[φp(μ,λ1(x))]p−1

)
.
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4. Smoothing Newton method

In this section, we investigate the smoothing algorithm based on the smoothing function �p(μ, x) for solving the SOCAVE 
(2), and show the convergence properties of the considered algorithm. First, we present the generic framework of the 
smoothing algorithm.

Algorithm 4.1 (A smoothing Newton algorithm).

Step 0 Choose δ ∈ (0, 1), σ ∈ (0,1), and μ0 ∈ R++ , x0 ∈ R
n . Set z0 := (μ0, x0), e := (1, 0) ∈ R × R

n−1. Choose β > 1
satisfying min{1, ‖H(z0)‖2} ≤ βμ0. Set k := 0.

Step 1 If ‖H(zk)‖ = 0, stop. Otherwise, set τk := min{1, ‖H(zk)‖}.

Step 2 Compute �zk = (�μk, �xk) ∈R ×R
n by

H(zk) + H ′(zk)�zk = 1

β
τ 2

k e, (11)

where H ′(zk) denotes the Jacobian matrix of H(zk) at (μk, xk) given by (9).

Step 3 Let αk be the maximum of the values 1, δ, δ2, · · · such that

‖H(zk + αk�zk)‖ ≤
[

1 − σ(1 − 1

β
)αk

]
‖H(zk)‖. (12)

Step 4 Set zk+1 := zk + αk�zk and k := k + 1. Go to Step 1.

In order to explain that Algorithm 4.1 is well defined, we have to prove that the system of Newton equation (11) is 
solvable, and the line search (12) is well-defined. To this end, we need the next two technical lemmas.

Lemma 4.1. For any M, N ∈ R
n×n, σmin(M) > σmax(N) if and only if σmin(MT M) > σmax(N T N). In addition, if σmin(MT M) >

σmax(N T N), then MT M − N T N is positive definite. Here σmin(M) denotes the minimum singular value of M, and σmax(N) denotes 
the maximum singular value of N.

Proof. The proof is straightforward or can be found in usual textbook of matrix analysis, so we omit it here. �
Lemma 4.2. Let A, S ∈ R

n×n and A be symmetric. Suppose that the eigenvalues of A and S S T are arranged in non-increasing order. 
Then, for each k = 1, 2, · · · , n, there exists a nonnegative real number θk such that

λmin(S S T ) ≤ θk ≤ λmax(S S T ) and λk(S A S T ) = θkλk(A).

Proof. Please see [18, Corollary 4.5.11] for a proof. �
In order to show that the Jacobian matrix H ′(μ, x) in Newton equation (11) is nonsingular for any μ > 0. We need the 

following assumption:

Assumption 4.1. For the SOCAVE (2), it holds σmin(A) > σmax(B).

In fact, under the condition of Assumption 4.1, the SOCAVE (2) has a unique solution, which is verified in [33].

Theorem 4.1. Let H be defined as in (8). Suppose that Assumption 4.1 holds. Then, the Jacobian matrix H ′(μ, x) in Newton equa-
tions (11) is nonsingular for any μ > 0.

Proof. From the expression of H ′(μ, x) given as in (9), we know that H ′(μ, x) is nonsingular if and only if the matrix 
A + B ∂�(μ,x)

∂x is nonsingular. Thus, it suffices to show that the matrix A + B ∂�(μ,x)
∂x is nonsingular. Suppose not, i.e., there 

exists a vector 0 �= v ∈ R
n such that[

A + B
∂�(μ, x)

∂x

]
v = 0.

This implies that

v T AT Av = v T
[

∂�(μ, x)
]T

BT B
∂�(μ, x)

v. (13)

∂x ∂x
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For convenience, we denote C := ∂�(μ,x)
∂x . Then, it follows that v T AT Av = v T C T BT BC v . By Lemma 4.2, there exists a con-

stant θ̂ such that

λmin(C T C) ≤ θ̂ ≤ λmax(C T C) and λmax(C T BT BC) = θ̂λmax(BT B).

Note that if we can prove that 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1, we have λmax(C T BT BC) ≤ λmax(BT B). Then, by the assump-
tion that the minimum singular value of A strictly exceeds the maximum singular value of B , and applying Lemma 4.1, 
we obtain v T AT Av > v T C T BT BC v . This contradicts the formula (13), which shows the Jacobian matrix H ′(μ, x) in Newton 
equations (11) is nonsingular for μ > 0.

Thus, as discussed above, we only need to prove 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1. For x2 = 0, we compute that C =
sgn(x1)|x1|p−1[
p√μp+|x1|p

]p−1 I . Then, it is clear that 0 < λ(C T C) < 1 for μ > 0. For x2 �= 0, using the fact that the matrix MT M is always 

positive semidefinite for any matrix M ∈ R
m×n , we see that the inequality λmin(C T C) ≥ 0 always holds. In order to prove 

that λmax(C T C) ≤ 1, we need to further prove that the matrix I − C T C is positive semidefinite. To see this, note that

I − C T C =
⎡
⎣ 1 − b2 − c2 −2bc

xT
2‖x2‖

−2bc x2‖x2‖ (1 − a2)I + (a2 − b2 − c2)
x2xT

2
‖x2‖2

⎤
⎦ .

Because b2 + c2 = 1

2

[
|λ2(x)|2(p−1)

[φp(μ,λ2(x))]2(p−1)
+ |λ1(x)|2(p−1)

[φp(μ,λ1(x))]2(p−1)

]
<

1

2
·2 = 1 for μ > 0, we have 1 −b2 − c2 > 0. Moreover, 

the Schur complement of 1 − b2 − c2 has the form of

(1 − a2)I + (a2 − b2 − c2)
x2xT

2

‖x2‖2
− 4b2c2

1 − b2 − c2

x2xT
2

‖x2‖2

= (1 − a2)

(
I − x2xT

2

‖x2‖2

)
+
(

1 − b2 − c2 − 4b2c2

1 − b2 − c2

)
x2xT

2

‖x2‖2
. (14)

On the other hand, |λi(x)| < φp(μ, λi(x)) (i = 1, 2) for μ > 0, we have∣∣φp(μ,λ2(x)) − φp(μ,λ1(x))
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣
|λ2(x)|p − |λ1(x)|p

p∑
i=1

[
φp(μ,λ2(x))

]p−i [
φp(μ,λ1(x))

]i−1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

(|λ2(x)| − |λ1(x)|)
p∑

i=1

|λ2(x)|p−i |λ1(x)|i−1

p∑
i=1

[
φp(μ,λ2(x))

]p−i [
φp(μ,λ1(x))

]i−1

∣∣∣∣∣∣∣∣∣∣∣
< ||λ2(x)| − |λ1(x)||
≤ |λ2(x) − λ1(x)|.

This together with (10) implies that 1 − a2 > 0 for any μ > 0. In addition, for any μ > 0, we observe that

(1 − b2 − c2)2 − 4b2c2 = (1 − (b − c)2)(1 − (b + c)2)

=
[

1 − |λ1(x)|2(p−1)[
φp(μ,λ1(x))

]2(p−1)

]
·
[

1 − |λ2(x)|2(p−1)[
φp(μ,λ2(x))

]2(p−1)

]

> 0,

where the inequality holds due to |λi(x)| < φp(μ, λi(x)) for i = 1, 2 and μ > 0. With all of these, we see that the Schur 

complement of 1 − b2 − c2 given as in (14) is a linear positive combination of the matrices 
(

I − x2xT
2

‖x2‖2

)
and x2xT

2
‖x2‖2 , which 

yields that the Schur complement (14) of 1 − b2 − c2 is positive semidefinite. Hence, the matrix I − C T C is also positive 
semidefinite, which is equivalent to saying 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1. Thus, the proof is complete. �
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Theorem 4.1 indicates the Newton equation (11) in Algorithm 4.1 is solvable. It paves a way to show that the linear 
search (12) in Algorithm 4.1 is well-defined which is given in Theorem 4.2 as below. Indeed, the proof is very similar to the 
one in [17, Remark 2.1 (v)], we only present it here and omit its proof.

Theorem 4.2. Suppose that Assumption 4.1 holds. Then, for �z ∈ R ×R
n given by (11), the linear search (12) is well-defined.

Next, we discuss the convergence of Algorithm 4.1. To this end, we need the following results whose arguments are 
similar to the ones in [17, Remark 2.1].

Theorem 4.3. Let H be defined as in (8). Suppose that Assumption 4.1 holds and that the sequence {zk} is generated by Algorithm 4.1. 
Then, the following results are hold.

(a) The sequences {‖H(zk)‖} and {τk} are monotonically non-increasing.
(b) βμk ≥ τ 2

k for all k.
(c) The sequence {μk} is monotonically non-increasing and μk > 0 for all k.
(d) The sequence {zk} is bounded.

Proof. (a) From definition of the line search in (12) and τk := min{1, ‖H(zk)‖}, it is clear that {‖H(zk)‖} and {τk} are 
monotonically non-increasing.

(b) We prove this conclusion by induction. First, by Algorithm 4.1, it is clear that τ 2
0 ≤ βμ0 with τ0, β and μ0 chosen in 

Algorithm 4.1. Secondly, we suppose that τ 2
k ≤ βμk for some k. Then, for k + 1, we have

μk+1 − τ 2
k+1

β
= μk + αk�μk − τ 2

k+1

β

= (1 − αk)μk + αk
τ 2

k

β
− τ 2

k+1

β

≥ (1 − αk)
τ 2

k

β
+ αk

τ 2
k

β
− τ 2

k+1

β

≥ 0,

where the second equality holds due to the Newton equation (11), and the second inequality holds due to part (a). Hence, 
it follows that βμk ≥ τ 2

k for all k.

(c) From the iterative scheme zk+1 = zk + αk
zk , we know μk+1 = μk + αk�μk . By the Newton equations (11) and the line 
search as in (12) again, it follows that

μk+1 = (1 − αk)μk + αk
τ 2

k

β
≥ (1 − αk)

τ 2
k

β
+ αk

τ 2
k

β
> 0

for all k. On the other hand, we have

μk+1 = (1 − αk)μk + αk
τ 2

k

β
≤ (1 − αk)μk + αkμk ≤ μk,

where the first inequality holds due to part (b). Hence, the sequence {μk} is monotonically non-increasing and μk > 0 for 
all k.

(d) From part (a), we know the sequence {‖H(zk)‖} is bounded. Thus, there is a constant C such that ‖H(zk)‖ ≤ C . In 
addition, since

4
∥∥∥λ1(xk)u(1)

x + λ2(xk)u(2)
x

∥∥∥2 −
p
√

4

4

(
|λ1(xk)| + |λ2(xk)|

)2

= 1

4

[
(8 − 2

p
√

4)(|λ1(xk)|2 + |λ2(xk)|2) + p
√

4(|λ1(xk)| − |λ2(xk)|)2
]

> 0 (∀p > 1),

it follows that
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‖H(zk)‖
≥
∥∥∥Axk + B�p(μk, xk) − b

∥∥∥
≥
∥∥∥Axk

∥∥∥−
∥∥∥B�p(μk, xk)

∥∥∥− ‖b‖

=
√

(xk)T AT Axk −
√

[�p(μk, xk)]T BT B�p(μk, xk) − ‖b‖
≥
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)‖�p(μk, xk)‖2 − ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)

∥∥∥φp(μk, λ1(xk))u(1)
x + φp(μk, λ2(xk))u(2)

x

∥∥∥2 − ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)
[
φ2

p(μk, λ1(xk))‖u(1)
x ‖2 + φ2

p(μk, λ2(xk))‖u(2)
x ‖2

]
− ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)

[
1

2

(
p
√

(μ
p
k + |λ1(xk)|p)2 + p

√
(μ

p
k + |λ2(xk)|p)2

)]
− ‖b‖

≥
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)

·
√[

1

2

(
(μ2

k + |λ1(xk)|2 + p
√

2μk|λ1(xk)|) + (μ2
k + |λ2(xk)|2 + p

√
2μk|λ2(xk)|)

)]
− ‖b‖

=
√

λmin(AT A)‖xk‖

−
√

λmax(BT B)

√
μ2

k + 1

2
|λ1(xk)|2 + 1

2
|λ2(xk)|2 +

p
√

2

2
μk(|λ1(xk)| + |λ2(xk)|) − ‖b‖

≥
√

λmin(AT A)‖xk‖
−
√

λmax(BT B)

√
μ2

k + 1

2
|λ1(xk)|2 + 1

2
|λ2(xk)|2 + 2μk‖λ1(xk)u(1)

x + λ2(xk)u(2)
x ‖ − ‖b‖

=
√

λmin(AT A)‖xk‖ −
√

λmax(BT B)
[
μk + ‖λ1(xk)u(1)

x + λ2(xk)u(2)
x ‖
]
− ‖b‖

=
(√

λmin(AT A) −
√

λmax(BT B)
)

‖xk‖ −
√

λmax(BT B)μk − ‖b‖.
This together with ‖H(zk)‖ ≤ C implies

‖xk‖ ≤ C +√λmax(BT B)μk + ‖b‖√
λmin(AT A) −√λmax(BT B)

holds for all k. Thus, the sequence {xk} is bounded. �
Theorem 4.4. Suppose that Assumption 4.1 holds and that {zk} is generated by Algorithm 4.1. Then, any accumulation point of {zk} is 
a solution to the SOCAVE (2).

Proof. From Theorem 4.3 (d), we know the sequence {zk} is bounded. Hence, there exists at least a accumulation point 
for the sequence {zk}. Without loss of generality, let limk→∞ zk := z� = (μ�, x�). Then, it follows that H� := H(z�) =
limk→∞ H(zk) and τ� := min{1, ‖H�‖} = limk→∞ min{1, ‖H(zk)‖}. Now, we will show H� = 0. Suppose not, i.e., ‖H�‖ > 0. 
To proceed, we discuss two cases according to whether limk→∞ αk = 0 or αk ≥ α̂ > 0 with α̂ ∈ R++ .

Case 1: limk→∞ αk = 0. Then, from the line search (12), for the number αk := αk
δ

with all sufficiently large k, we have

‖H(zk + αk�zk)‖ > [1 − σ(1 − 1

β
)αk]‖H(zk)‖.

Furthermore, this leads to

‖H(zk + αk�zk)‖ − ‖H(zk)‖
αk

> −σ(1 − 1

β
)‖H(zk)‖. (15)

Besides, from Theorem 4.3 (c) again, we know μ� ≥ 0. It follows that the function H is continuously differentiable at the 
point z� . Taking k → ∞ in the formula (15), we have
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〈H(z�), H ′(z�)�z�〉
‖H(z�)‖ ≥ −σ(1 − 1

β
)‖H(z�)‖. (16)

This combining the Newton equations (11) yields

〈H(z�), H ′(z�)�z�〉
‖H(z�)‖ = (τ�)

2

β‖H(z�)‖〈H(z�), e〉 − ‖H(z�)‖

≤ (τ�)
2‖H(z�)‖

β‖H(z�)‖ − ‖H(z�)‖

≤ τ�

β
− ‖H(z�)‖

≤ (
1

β
− 1)‖H(z�)‖, (17)

where the first inequality holds due to the Hölder inequality 〈H(z�), e〉 ≤ ‖H(z�)‖‖e‖ = ‖H(z�)‖, the second and third 
inequality hold due to τ� = min{1, ‖H(z�)‖}. Putting (16) and (17) together gives 1

β
− 1 ≥ −σ(1 − 1

β
). This contradicts 

σ ∈ (0, 1) and β > 1.

Case 2: αk ≥ α̂ > 0 for all k. From the line search (12), we have

‖H(zk+1)‖ ≤
[

1 − σ(1 − 1

β
)α̂

]
‖H(zk)‖ = ‖H(zk)‖ − σ(1 − 1

β
)α̂‖H(zk)‖.

Then, it follows from the boundedness of ‖H(zk)‖ that 
∑∞

k=0 α̂σ (1 − 1
β
)‖H(zk)‖ is bounded. Moreover, we have 

limk→∞ ‖H(zk)‖ = 0, i.e., ‖H�‖ = 0. This contradicts ‖H�‖ > 0.

Hence, from all the above, we show H(z�) = 0. That is, the element x� is a solution of the SOCAVE (2). Then, the proof 
is complete. �

Now, we show the local quadratic convergence of Algorithm 4.1. In fact, we can achieve the following result by similar 
arguments as those in [37, Theorem 8]. For completeness, we also provide a detailed proof.

Theorem 4.5. Let H be defined as in (8) and z� be the unique solution to SOCAVE (2). Suppose that Assumption 4.1 holds and that all 
V ∈ ∂ H(z�) are nonsingular. Then, the whole sequence {zk} converges to z� , and ‖zk+1 − z�‖ = O (‖zk − z�‖2).

Proof. Since z� is the solution to SOCAVE (2), using Assumption 4.1 and applying Theorem 4.1 yield that the Jacobian matrix 
H ′(zk) is nonsingular for all zk sufficiently close to z� . On the other hand, applying the condition that all V ∈ ∂ H(z�) are 
nonsingular and from [36, Proposition 3.1], we have ‖H ′(zk)−1‖ = O (1) for all zk sufficiently close to z� . Because z� is the 
solution to SOCAVE (2), it is clear that z� is a solution of H(z) = 0. In addition, the function H is strongly semismooth, it 
follows that

‖H(zk) − H(z�) − H ′(zk)(zk − z�))‖ = O (‖zk − z�‖2).

Thus, we have

∥∥∥zk + �zk − z�
∥∥∥=

∥∥∥∥zk + H ′(zk)−1
[
−H(zk) + 1

β
τ 2

k e

]
− z�

∥∥∥∥
≤
∥∥∥H ′(zk)−1

(
−H(zk) + H ′(zk)(zk − z�)

)∥∥∥+
∥∥∥∥H ′(zk)−1 1

β
τ 2

k e

∥∥∥∥
≤
∥∥∥H ′(zk)−1

(
−H(zk) + H ′(zk)(zk − z�)

)∥∥∥+ O (1)

∥∥∥∥ 1

β
τ 2

k e

∥∥∥∥
= O (‖H(zk) − H(z�) − H ′(zk)(zk − z�)‖) + O (‖H(zk)‖2)

= O (‖zk − z�‖2) + O (‖zk − z�‖2)

= O (‖zk − z�‖2)

where the first equality holds due to the Newton equation (11), and the third equality holds since the function H is locally 
Lipschitz continuous near zk . Then, the proof is complete. �
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5. Numerical results

This section is devoted to the numerical results. First, we show the numerical comparison between the smoothing New-
ton algorithm and generalized Newton method. This provides the numerical evidence about why we adopt the smoothing 
Newton algorithm, not the generalized Newton algorithm, in this paper. Secondly, we use the performance profile to depict 
the comparison among different values of p. This shows that the smoothing Newton algorithm is not regularly affected 
when p is perturbed. Moreover, a suitable smoothing function from the class of smoothing functions is suggested in view 
of the numerical comparisons.

5.1. Smoothing Newton algorithm vs generalized Newton method

In this subsection, for fixed p = 2, we provide some numerical examples to evaluate the efficiency of Algorithm 4.1. In 
our tests, we choose parameters

μ0 = 0.1, x0 = rand(n,1), δ = 0.5, σ = 10−5 and β = max(1,1.01 ∗ τ 2
0 /μ).

We stop the iterations when ‖H(zk)‖ ≤ 10−6 or the number of iterations exceeds 100. All the experiments are done on a 
PC with Intel(R) CPU of 2.40 GHz and RAM of 4.00 GHz, and all the program codes are written in Matlab and run in Matlab 
environment. We consider the following four problems, and compute these problems by using Smoothing Newton Algo-
rithm (SN for short) 4.1 and Generalized Newton method (GN for short) which introduced in [16], respectively. Illustrative 
examples further demonstrate the superiority of our proposed algorithm.

Problem 5.1. Consider the SOCAVE (2) which is generated in the following way: first choose two random matrices B, C ∈
R

n×n from a uniformly distribution on [−10, 10] for every element. We compute the maximal singular value σ1 of B and 
the minimal singular value σ2 of C , and let σ := min{1, σ2/σ1}. Next, we divide C by σ multiplied by a random number 
in the interval [0, 1], and the resulting matrix is denoted as A. Accordingly, the minimum singular values of A exceeds 
the maximal singular value of B . We choose randomly b ∈ R

n on [0, 1] for every element. By Algorithm 4.1 in this paper, 
the resulting SOCAVE (2) is solvable. The initial point is chosen in the range [0, 1] entry-wisely. Note that a similar way to 
construct the problem was given in [16].

Problem 5.2. Consider the SOCAVE (2) which is generated in the following way: choose two random matrices C, D ∈ R
n×n

from a uniformly distribution on [−10, 10] for every element, and compute their singular value decompositions C :=
U1 S1 V T

1 and D := U2 S2 V T
2 with diagonal matrices S1 and S2; unitary matrices U1, V 1, U2 and V 2. Then, we choose 

randomly b, c ∈ R
n on [0, 10] for every element. Next, we take a ∈ R

n by setting ai = ci + 10 for all i ∈ {1, . . . , n}, so that 
a ≥ b. Set A := U1Diag(a)V T

1 and B := U2Diag(b)V T
2 , where Diag(x) denotes a diagonal matrix with its i-th diagonal element 

being xi . The gap between the minimal singular value of A and the maximal singular value of B is limited and can be very 
small. We choose randomly b ∈ R

n in [0, 10]. The initial point is chosen in the range [0, 1] entry-wisely.

Problem 5.3. Consider the SOCAVE (2) which is generated in the following way: choose two random matrices A, B ∈ R
n×n

from a uniformly distribution on [−10, 10] for every element. In order to ensure that the SOCAVE (2) is solvable, we update 
the matrix A by the following: let [U S V ] = svd(A). If min{S(i, i)} = 0 for i = 0, 1, · · · , n, we make A = U (S + 0.01E)V , and 
then A = λmax(BT B)+0.01

λmin(AT A)
A. We choose randomly b ∈ R

n on [0, 10] for every element. The initial point is chosen in the range 
[0, 1] entry-wisely.

Problem 5.4. We consider the SOCAVE (2) which is generated the same as Problem 5.1. But, here the SOC is given by 
K :=Kn1 × · · · ×Knr , where n1 = · · · = nr = n

r .

The above Problems 5.1–5.4 are both generated randomly. Below, as suggested by the reviewer, we consider a real 
application problem. It is well known that the second-order cone linear complementarity problem (SOCLCP) has various 
applications in engineering, control, finance, robust optimization and combinatorial optimization since the KKT system of a 
second-order cone programming can be recast an SOCLCP. In general, the SOCLCP is to find x, y ∈ Rn such that

Mx + P y = c, x ∈ K, y ∈ K, xT y = 0, (18)

where M, P ∈ Rn×m are given matrices and c ∈ Rn is given vector. From [16, Theorem 1.1], we know that the SOCLCP (18) is 
equivalent to the SOCAVE (2). In view of this, the next experiment is on this case.

Problem 5.5. Consider the SOCLCP with P = −I , which is generated in the following way: First, we generate a matrix B
and a vector b as those given in Problem 5.1. Then, let d be a random number in [0, 1]. We set M := B BT + (1 + d)I and 
c := 0.5(M(b +|b|) +|b| −b) to ensure the solvability of the SOCLCP. We test the above SOCLCP by casting it into an SOCAVE 
according to [16, Theorem 1.1], i.e., we implement the corresponding SOCAVE with A = M + I , B = M − I and b = 2c. 
Moreover, the initial point is chosen in the range [0, 1] entry-wisely.
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Table 1
Numerical results for Problem 5.1.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 8.618e−08 2.8 0.078 3 2 0 9.992e−08 2.8 0.349 3 2 0
200 4.901e−08 2.6 0.051 3 2 0 6.904e−10 2.9 0.134 3 2 0
300 1.574e−08 2.7 0.122 3 2 0 3.779e−09 2.9 0.231 3 2 0
400 3.041e−09 2.7 0.232 3 2 0 9.155e−08 2.7 0.326 3 2 0
500 1.778e−07 2.2 0.300 3 2 0 1.445e−07 2.6 0.421 3 2 0
600 1.385e−07 2.5 0.498 3 2 0 5.626e−08 2.8 0.844 3 2 0
700 2.578e−07 2.4 0.668 3 2 0 1.527e−08 2.6 1.334 3 2 0
800 2.356e−07 2.1 0.771 3 2 0 6.846e−08 2.6 1.905 3 2 0
900 2.420e−08 2.5 1.031 3 2 0 1.272e−09 2.7 2.685 3 2 0
1000 4.718e−08 2.5 1.193 3 2 0 1.135e−07 2.7 3.691 3 2 0
1500 2.027e−07 2.3 1.919 3 2 0 6.417e−08 2.6 13.369 3 2 0
2000 3.121e−08 2.2 3.892 3 2 0 1.015e−07 2.5 32.982 3 2 0
2500 1.565e−07 2.1 6.625 3 2 0 3.940e−08 2.5 53.510 3 2 0
3000 1.028e−07 2.3 12.340 3 2 0 1.293e−07 2.5 87.910 3 2 0

Table 2
Numerical results for Problem 5.2.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 2.884e−07 4.2 0.050 5 4 0 1.920e−07 4.4 0.134 5 4 0
200 4.556e−07 4.3 0.067 5 4 0 2.637e−07 4.6 0.346 5 4 0
300 2.805e−07 4.5 0.172 5 4 0 3.522e−07 4.4 0.615 5 4 0
400 2.453e−07 4.6 0.312 5 4 0 2.617e−07 4.6 0.863 5 4 0
500 1.809e−13 5.0 0.516 5 5 0 1.037e−07 4.8 1.440 5 4 0
600 1.870e−07 4.8 0.680 5 4 0 3.414e−12 5.0 2.346 5 5 0
700 2.550e−13 5.0 0.880 5 5 0 6.571e−08 4.9 3.535 5 4 0
800 2.868e−13 5.0 1.083 5 5 0 1.606e−07 4.8 5.317 5 4 0
900 7.559e−08 4.9 1.201 5 4 0 2.485e−07 4.7 7.596 5 4 0
1000 3.595e−13 5.0 1.572 5 5 0 1.662e−07 4.8 10.552 5 4 0
1500 5.412e−13 5.0 4.196 5 5 0 1.782e−11 5.0 34.400 5 5 0
2000 7.230e−13 5.0 8.962 5 5 0 2.851e−11 5.0 79.108 5 5 0
2500 8.893e−13 5.0 17.207 5 5 0 4.451e−11 5.0 146.769 5 5 0
3000 1.054e−12 5.0 29.175 5 5 0 6.119e−11 5.0 247.029 5 5 0

Table 3
Numerical results for Problem 5.3.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 7.928e−10 3.0 0.048 3 3 0 2.085e−08 3.0 0.075 3 3 0
200 9.461e−10 3.0 0.062 3 3 0 4.297e−09 3.0 0.108 3 3 0
300 2.388e−10 3.0 0.122 3 3 0 5.843e−08 2.9 0.237 3 2 0
400 5.780e−11 3.0 0.236 3 3 0 3.841e−08 2.8 0.379 3 2 0
500 1.133e−08 2.9 0.360 3 2 0 1.183e−09 2.9 0.501 3 2 0
600 2.655e−08 2.9 0.566 3 2 0 1.225e−10 3.0 0.627 3 3 0
700 2.202e−11 3.0 0.807 3 3 0 2.525e−10 3.0 0.978 3 3 0
800 8.893e−08 2.8 0.975 3 2 0 2.563e−10 3.0 1.576 3 3 0
900 1.818e−08 2.9 1.240 3 2 0 2.505e−10 3.0 2.374 3 3 0
1000 6.951e−10 3.0 1.502 3 3 0 3.247e−10 3.0 3.367 3 3 0
1500 4.225e−08 2.9 2.482 3 2 0 4.245e−10 3.0 11.625 3 3 0
2000 6.979e−08 2.6 4.683 3 2 0 1.705e−09 3.0 27.704 3 3 0
2500 9.459e−10 2.9 9.441 3 2 0 1.376e−09 3.0 53.306 3 3 0
3000 5.624e−08 2.9 15.765 3 2 0 1.943e−08 2.8 91.226 3 2 0

In our experiments, every set of the simulations for every problem is randomly generated ten times, and the numerical 
results are listed in Tables 1–5, respectively. In Tables 1–5, n denotes the size of testing problem; ares denotes the average 
value of ‖H(zk)‖ when the test stops; itn denotes the average value of the iteration numbers; time denotes the average value 
of the CPU time in seconds; maxit and minit denote the maximal value and the minimal value of the iteration numbers, 
respectively; and f ails denotes that the times of test is failed. From the numerical results that are presented in Tables 1–5, 
it is easy to see that the proposed smoothing Newton method is effective for solving all the simulated SOCAVE problems. 
For the SOCLCP, although the smoothing Newton method performs slightly less than the generalized Newton method, the 
difference is marginal. To sum up, both approaches are competitive and can be employed to solve SOCAVE.
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Table 4
Numerical results for Problem 5.4.

SN GN

n r Ares Itn Time Maxit Minit Fails Ares Itn Time Maxit Minit Fails

2 9.933e−08 2.4 1.318 3 2 0 2.995e−10 2.9 3.627 3 2 0
4 1.174e−07 2.5 1.245 3 2 0 1.594e−08 2.6 3.106 3 2 0

1000 5 1.056e−07 2.4 1.293 3 2 0 9.657e−08 2.7 3.115 3 2 0
10 3.380e−13 5.0 1.791 5 5 0 3.971e−08 2.5 3.218 3 2 0
20 3.360e−13 5.0 2.103 5 5 0 5.291e−08 2.7 3.181 3 2 0

2 1.971e−08 2.6 5.084 3 2 0 2.494e−08 2.6 28.888 3 2 0
4 1.047e−07 2.3 4.270 3 2 0 5.363e−08 2.6 29.002 3 2 0

2000 5 1.257e−07 2.5 4.813 3 2 0 1.360e−08 2.8 29.055 3 2 0
10 6.689e−13 5.0 10.463 5 5 0 1.360e−08 2.8 29.055 3 3 0
20 6.653e−13 5.0 11.255 5 5 0 1.360e−08 2.8 29.055 3 4 0

2 1.560e−07 2.1 12.312 3 2 0 2.496e−07 2.5 90.699 3 2 0
4 1.162e−07 2.5 14.457 3 2 0 1.609e−07 2.3 89.813 3 2 0

3000 5 3.156e−07 2.2 12.995 3 2 0 6.872e−0 2.4 88.921 3 2 0
10 9.922e−13 5.0 32.011 5 5 0 1.688e−07 2.4 90.041 3 2 0
20 1.016e−12 5.0 33.877 5 5 0 1.411e−08 2.5 88.949 3 2 0

Table 5
Numerical results for Problem 5.5.

SN GN

n Ares Itn Time Maxi Mini Fails Ares Itn Time Maxi Mini Fails

100 1.159e−10 3.0 0.011 3 3 0 6.353e−11 2.2 0.019 3 2 0
200 3.093e−10 3.0 0.017 3 3 0 2.691e−10 2.0 0.009 2 2 0
300 5.937e−10 3.0 0.039 3 3 0 4.905e−10 2.1 0.025 3 2 0
400 1.162e−09 3.0 0.100 3 3 0 1.205e−09 2.1 0.064 3 2 0
500 1.755e−09 3.0 0.129 3 3 0 1.538e−09 2.1 0.112 3 2 0
600 2.439e−09 3.0 0.223 3 3 0 2.239e−09 2.0 0.154 2 2 0
700 3.897e−09 3.0 0.298 3 3 0 3.522e−09 2.0 0.229 2 2 0
800 4.918e−09 3.0 0.399 3 3 0 3.407e−09 2.0 0.289 2 2 0
900 5.487e−09 3.0 0.566 3 3 0 5.359e−09 2.0 0.643 2 2 0
1000 7.328e−09 3.0 0.971 3 3 0 5.994e−09 2.0 0.530 2 2 0
1500 1.687e−08 3.0 2.140 3 3 0 1.354e−08 2.0 1.635 2 2 0
2000 3.121e−08 3.0 4.733 3 3 0 2.519e−08 2.0 3.597 2 2 0
2500 4.956e−08 3.0 8.784 3 3 0 4.010e−08 2.0 6.387 2 2 0
3000 6.581e−08 3.0 14.508 3 3 0 6.062e−08 2.0 10.855 2 2 0

5.2. Numerical comparisons with different values of p

In this subsection, we observe the numerical comparison of Algorithm 4.1 with different values of p. In particular, 
we consider the performance profile which is introduced in [44] as a means. In other words, we regard Algorithm 4.1
corresponding to different p = 1.1, 2, 3, 10, 20, 80 as a solver, and assume that there are ns solvers and nq test problems 
from the test set P which is generated randomly. We are interested in using the computing time as performance measure 
for Algorithm 4.1 with different p. For each problem q and solver s, let

fq,s = computing time required to solve problem q by solver s.

We employ the performance ratio

rq,s := fq,s

min{ fq,s : s ∈ S} ,

where S is the six solvers set. We assume that a parameter rq,s ≤ rM for all q, s are chosen, and rq,s = rM if and only if 
solver s does not solve problem q. In order to obtain an overall assessment for each solver, we define

ρs(τ ) := 1

nq
size{q ∈ P : rq,s ≤ τ },

which is called the performance profile of the computing time for solver s. Then, ρs(τ ) is the probability for solver s ∈ S
that a performance ratio fq,s is within a factor τ ∈R of the best possible ratio.

Fig. 1 depicts the performance profile of computation time in Algorithm 4.1 in the range of τ ∈ [1, 1.8] for six solvers 
on 200 test problem which are generated randomly from Problem 5.1 to Problem 5.4. The six solvers correspond to Al-
gorithm 4.1 with p = 1.1, 2, 3, 10, 20, 80, respectively. From this figure, we see that the algorithm is not regularly affected 
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Fig. 1. Performance profile of computation time of Algorithm 4.1 with different p.

when p is perturbed. Moreover, we observe that the large value of p and the small value of p which is close to 1 seem not 
the good choices of being employed to work with the proposed algorithm. When taking p = 2 along with Algorithm 4.1, it 
has best numerical performance. This suggests that φ2 is the best choice of function to be applied in the smoothing Newton 
method.

6. Concluding remarks

In this paper, we have studied the absolute value equation associated with SOC, which is a natural extension of the 
standard absolute value equation. Based on a class of smoothing functions, the smoothing Newton algorithm is proposed 
to solve SOCAVE iteratively. The algorithm is shown to be well-defined, quadratically convergent under suitable conditions. 
Some preliminary numerical results are reported which explain the efficiency of the proposed method. Although, the main 
idea for proving the convergence is similar to the one used in the literature, the analysis is indeed more subtle and involves 
more techniques due to the feature of SOC. Moreover, two kinds of numerical comparisons are presented in this paper. 
The first one is the numerical comparison between the smoothing Newton algorithm and generalized Newton method. This 
provides numerical evidence of indicating that the smoothing Newton algorithm and the generalized Newton algorithm are 
competitive for solving SOCAVE. Another comparison is based on various values of p, from which we see that the large 
value of p and the small value of p which is close to 1 are not suitable to work with the proposed algorithm. In particular, 
when taking p = 2 along with Algorithm 4.1, the numerical performance is the best. This suggests that φ2 is the best choice 
from the class of smoothing functions to be applied in the smoothing Newton method for solving SOCAVE.
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