Seminars_raw

Euclidean distance degree and the multiview conjecture

2019-04-22 00:00

Speaker: Laurentiu G. Maxim

unit:

Time: 2019-04-25 15:00-15:00

Venue: Room 108, Center for Applied Mathematics

starttime: 2019-04-25 15:00-15:00

Profile:


Theme:
Euclidean distance degree and the multiview conjecture
Time:
2019-04-25 15:00-15:00
Venue:
Room 108, Center for Applied Mathematics
Speaker:
Laurentiu G. Maxim

Abstract

       The Euclidean distance degree of an algebraic variety is a well-studied topic in applied algebra and geometry, with direct applications in geometric modeling, computer vision, and statistics. I will first describe a new topological interpretation of the Euclidean distance degree of an affine variety in terms of weighted Euler characteristics. As a concrete application, I will present a solution to the open problem in computer vision of determining the Euclidean distance degree of the affine multiview variety. Secondly, I will present a solution to a conjecture of Aluffi-Harris concerning the Euclidean distance degree of projective varieties. Projective varieties appear naturally in low rank matrix approximation, formation shape control, and all across algebraic statistics. (Joint work with J. Rodriguez and B. Wang.)


Contact us

Add:Building 58, The School of Mathematics, Tianjin University Beiyangyuan Campus,

        No. 135, Ya Guan Road, Jinnan District, Tianjin, PRC 

Tel:022-60787827   Mail:math@tju.edu.cn