报告人:
夏勇 【 北京航空航天大学】
报告人单位:
时间:
2018-11-14 10:30-11:30
地点:
天津大学卫津路校区14楼202室
开始时间:
2018-11-14 10:30-11:30
报告人简介:
年:
日月:
报告人简介
北京航空航天大学数学与系统科学学院教授,博士生导师,统计与运筹系系主任。2002年毕业于北京大学,中科院硕博连读,导师为袁亚湘院士。2007年博士毕业后年入职北航。研究方向为非凸全局优化,在MP、SIOPT等期刊发表SCI论文45篇,代表性工作:针对经典的二次指派问题提出了新型模型,被国际同行命名为Xia-Yuan 线性化;首次建立了完整的等式型 S-引理;解决了多个公开问题。2018获批国家自然科学基金优秀青年科学基金项目。
报告内容介绍
The total least squares problem with the general Tikhonov regularization can be reformulated as a one-dimensional parametric minimization problem (PM), where each parameterized function evaluation corresponds to solving an n- dimensional trust region subproblem. Under a mild assumption, the parametric function is differentiable and then an efficient bisection method has been proposed for solving (PM) in literature. In the first part of this paper, we show that the bisection algorithm can be greatly improved by reducing the initially estimated interval covering the optimal parameter. It is observed that the bisection method cannot guarantee to find the globally optimal solution since the nonconvex (PM) could have a local non-global minimizer. The main contribution of this paper is to propose an efficient branch-and-bound algorithm for globally solving (PM), based on a new underestimation of the parametric function over any given interval using only the information of the parametric function evaluations at the two endpoints. We can show that the new algorithm (BTD Algorithm) returns a global \epsilon-approximation solution in a computational effort of at most O (n^3/\sqrt{\epsilon}) under the same assumption as in the bisection method. The numerical results demonstrate that our new global optimization algorithm performs even much faster than the improved version of the bisection heuristic algorithm.