学术活动

Computational Resolution Limit: Theory and Algorithm

2019-09-27 16:00

报告人: 刘平

报告人单位: 香港科技大学

时间: 2019-09-27 16:00-17:00

地点: 卫津路校区6号楼111教

开始时间: 16:00

报告人简介: 博士

年: 2019

日月: 09.27

Given an image that is generated by the convolution of point sources with a band-limited function, the deconvolution problem is to reconstruct the source number, position, and amplitude. This problem arises from many important applications in imaging and signal processing, and there are many interesting results available. However, the theoretical understanding of the problem is far from complete. The aim of this paper is to provide an attempt. We propose the concept of computational resolution limit on the separation distance between the sources such that the exact recovery of source number is possible in the presence of noise. We derived a sharp upper bound on the resolution limit. Our result reveals the importance of the sparse of sources on the ill-posedness of the deconvolution problem. Stability results for recovering the source position are further derived when the separation distance is beyond our upper bound. Moreover, we propose a new MUSIC-type algorithm to recover the source number. It performs well even in the case when the separation distance of sources is close to the resolution limit. The proof of our results is based on a multipole expansion method and a novel non-linear approximation theory in Vandermonde space. These results paved the way to a mathematical theory of super-resolution which will be addressed in a forthcoming paper.


Contact us

Add:Building 58, The School of Mathematics, Tianjin University Beiyangyuan Campus,

        No. 135, Ya Guan Road, Jinnan District, Tianjin, PRC 

Tel:022-60787827   Mail:math@tju.edu.cn