报告人:
喻高航
报告人单位:
杭州电子科技大学
时间:
2023年4月14日 10:00—11:00
地点:
卫津路校区14-214
开始时间:
报告人简介:
教授
年:
日月:
报告摘要:Low-rank approximation of tensors has been widely used in high-dimensional data analysis. It usually involves singular value decomposition (SVD) of large-scale matrices with high computational complexity. Sketching is an effective data compression and dimensionality reduction technique applied to the low-rank approximation of large matrices. This talk presents two practical randomized algorithms for low-rank tensor approximation based on two-sided sketching and power scheme, with a rigorous error-bound analysis. Numerical experiments on synthetic and real-world tensor data demonstrate the competitive performance of the proposed algorithms
报告人简介:喻高航,杭州电子科技大学教授、博导,主要从事张量数据分析、大规模优化计算及其在机器学习、图像处理与医学影像中的应用研究。先后在SIAM Journal on Imaging Sciences, International Journal of Robust and Nonlinear Control,IEEE Signal Processing Letters,Journal of Mathematical Imaging and Vision等国际期刊上发表40余篇SCI论文,先后主持5项国家自然科学基金、1项教育部新世纪优秀人才支持计划项目和1项浙江省自然科学基金重大项目,有多篇论文入选ESI高被引榜单。现任任国际SCI学术期刊Intelligent Automation & Soft Computing的期刊编委;国际学术期刊Statistics, Optimization and Information Computing执行编委(Coordinating Editor)。