1.Dong-Yi Liu*, Li-Ping Zhang, Zhong-Jie Han, Gen-Qi Xu, Stabilization of the Timoshenko Beam System with Restricted Boundary Feedback Controls, Acta Applicandae Mathematicae, 2016, 141(1):149–164
2.Dong-Yi Liu*, Yi-Ning Chen, Gen-Qi Xu, Stabilization of Timoshenko beam using disturbance observer-based boundary controls, Proceedings of the 35th Chinese Control Conference, 2016, 1296-1300, Chengdu, P.R. China, 2016.2.27-7.29
3.Dong-Yi Liu, Li-Ping Zhang*, Gen-Qi Xu, Stabilization of Timoshenko beam system with a tip payload under the unknown boundary external disturbances , International Journal of Control, 2015, 88(9):1830–1840
4.Dong-Yi Liu*, Li-Ping Zhang, Gen-Qi Xu, Zhong-Jie Han, Stabilization of one-dimensional wave equations coupled with an ODE system on general tree-shaped networks, IMA Journal of Mathematical Control and Information, 2015,32(3):557-589
5.Y. Shang, D. Liu*, G. Xu, Super-stability and the spectrum of one-dimensional wave equations on general feedback controlled networks, IMA Journal of Mathematical Control and Information ,2014, 31 (1): 73-99.
6.D. Liu*, L. Zhang, G. Xu, Spectral method and its application to the conjugate gradient method, Applied Mathematics and Computation 2014, 240 : 339-347.
7.D. Liu*, G. Xu, Symmetric Perry conjugate gradient method, Computational Optimization and Applications, 2013, 56:317–341.
8.D. Liu*, G. Xu, Superstability of Wave Equations on A Tree-shape Network,Proceedings of the 2012 31th Chinese Control Conference, 2012,1257-1262.
9.D. Liu*, G. Xu, Riesz Basis and Stability Analysis of the Feedback Controlled Networks of 1-D Wave equations,WSEAS TRANSACTIONS on MATHEMATICS, 2012, 11(5) :434-455.
10.D. Liu*, G. Xu, Spectra of an 1-D Wave Equation on Networks,Proceedings of the 30th Chinese Control Conference, CCC 2011, 1037-1042.
11.Y. Chen*, Z. Han, G. Xu, D. Liu, Exponential stability of string system with variable coefficients under non-collocated feedback controls, Asian Journal of Control, 2011,13(1):148-163.
12.D. Liu*, G. Xu, Applying Powell’s symmetrical technique to conjugate gradient methods, Computational Optimization and Applications, 2011,49(2): 319-334.
13.D. Liu*, G. Xu, Stability of a Controlled String Network With a Circuit. 2010 Chinese Control and Decision Conference, CCDC 2010, 2683-2688.
14.F. Hu*, D. Liu, Optimal replenishment policy for the EPQ model with permissible delay in payments and allowable shortages; Applied Mathematical Modelling, 2010,34(10), 3108-3117.
15.D. Liu*, C. Shao, Descent Symmetrical Polak-Ribiere-Polyak Conjugate Gradient Method, Journal of Tianjin University (In Chinese), 2010,43(4):367-372.
16.D. Liu*, Y. Shang, A New Perry Conjugate Gradient Method With the Generalized Conjugacy Condition, 2010 International Conference on Computational Intelligence and Software Engineering, CiSE 2010, DOI: 10.1109/CISE.2010.5677114.
17.D.Liu*,Z. Han Y. Shang,L.Wang, Design of Controllers and Exponential Stability of a Triangle Loop Strings Network System, Journal of Tianjin University (In Chinese), 2009, 42(11):980-986.
18.G. Xu*, D. Liu, Y. Liu, Abstract second order hyperbolic system and applications to controlled network of strings, SIAM Journal on Control and Optimization, 2008, 47(4):1762-1784.
19.D. Liu*, Y. Shang and G. Xu, Design of controllers and compensators of a serially connected string system and its Riesz basis, Control Theory & Applications (In Chinese),2008, 25(5) : 815-818.
20.X. Cao*, D. Liu, G. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls, Journal of Dynamical and Control Systems, 2007,13(3):313-336.
21.刘东毅*;牛顿法和伴随理论在半线性发展方程描述的参数系统的系统辨识中的应用;数学物理学报(A辑);22(1);2002;29-35
22.Wenhuan Yu*, Dongyi Liu, Time-variant parameter estimation of a nonlinear system using a quasi-Newton method, Proceedings of the 14th World Congress. International Federation of Automatic Control, p 55-60 vol.9, 1999